Preferred Language
Articles
/
joe-2986
EXPERIMENTAL INVESTIGATION OF LAMINAR NATURAL CONVECTION HEAT TRANSFER IN A RECTANGULAR ENCLOSURE WITH AND WITHOUT INSIDE PARTITIONS
...Show More Authors

Experimental study has been conducted for laminar natural convection heat transfer of air flow through a rectangular enclosure fitted with vertical partition. The partition was oriented parallel to the two vertical isothermal walls with different temperatures, while all the other surfaces of the enclosure were insulated. In this study a test rig has been designed and constructed to allow studying the effect of Rayleigh number, aperture height ratio, partition thickness, the position of aperture according to the side walls and according to the height, the position of the partition according to the hot wall, and partition inclination. The experiments were carried out with air as the working fluid for Rayleigh number range (5*107 – 1.3*108) and aspect ratio of (0.5). 22 different configurations of partition were used in this study these are:
a) Undivided enclosure (no – partition).
b) (21) Cork partitions of different shapes.
Empirical correlations for average Nusselt number are obtained for the different cases tested. The results show that heat transfer is independent on the partition position according to the cold wall and according to the upper or lower walls, while it shows that heat transfer is sensitive to:
1. Rayleigh number (Ra), which increase with increasing Ra.
2. Aperture height ratio (Ap=hp/H), which is found that when Ap= 5/6 (case 2,3), the reduction in heat transfer is 10.3%, while when Ap=1/2 (case 4,5), the reduction is 17.2% compared with the non partitioned enclosure.
3. Aperture position according to the height, which is found that when the aperture at the centre of the partition (case 13), the reduction in heat transfer is 16.7%, while when the aperture displaced to the upper surface (case 14), the reduction is 19% compared with the non partitioned enclosure.
4. Partition thickness (t), which is found that when t = 10 mm (case 4,5) the reduction in heat transfer is 17.2%, while when t = 150 mm (case 16) the reduction is 20.5% compared with the non partitioned enclosure.
5. Partition inclination (), which is found that the rate of heat transfer reduced with increasingas shown:
a. For = 30 toward the cold wall (case 22), the reduction in heat transfer is 18.2%.
b. For = 45 toward the cold wall (case 18), the reduction in heat transfer was 21.9%.
c. For = 60 toward the cold wall (case 20), the reduction in heat transfer is 30.2%.
d. For = 30 toward the hot wall (case 21), the reduction in heat transfer is 31.3%.
e. For = 45 toward the hot wall (case 17), the reduction in heat transfer is 40.7%.

f. For = 60 toward the hot wall (case 19), the reduction in heat transfer is 42.1%.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Mar 01 2018
Journal Name
Journal Of Engineering
Numerical Investigation of the Effect of Inserted Twisted Tape inside Submerged Bundle Tubes on its Thermal Performance
...Show More Authors

Twisted tape insertion in smooth plain tube is one of types of passive methods that is used to enhance heat transfer. Swirl fluid flow inside tube and related heat transfer characteristics are very complex. ANSYS FLUENT (V 16.1) and ASPEN industrial program are used in analyzing this technique for enhancement heat transfer. A circular plain tube has length L=8534mm and 17 mm inner diameter with twisted tape has twist ratio of y = (H/D) = (150/17) =8.8 along with a plain tube were considered for this study. Eight Reynolds numbers (Re) of 784, 1000, 2000, 3000, 4000, 5000, 6000 and 7000 are used to analyze the response of thermal performance. Crude oil API 28 exit temperature, film heat transfer coefficient, Nusselt number

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jun 29 2018
Journal Name
Journal Of Engineering
Numerical Investigation of the Effect of Inserted Twisted Tape inside Submerged Bundle Tubes on its Thermal Performance
...Show More Authors

Twisted tape insertion in the smooth plain tube is one of the types of passive methods that are used to enhance heat transfer. Swirl fluid flow inside the tube and related heat transfer characteristics are very complex. ANSYS FLUENT (V 16.1) and ASPEN industrial program are used in analyzing this technique for enhancement heat transfer. A circular plain tube has length L=8534mm and 17 mm inner diameter with a twisted tape of twist ratio of y = (H/D) = (150/17) =8.8 along the plain tube were considered for this study. Eight Reynolds numbers (Re) of 784, 1000, 2000, 3000, 4000, 5000, 6000 and 7000 are used to analyze the response of thermal performance. Crude oil API 28 exit temperature, film heat transfer coefficient, Nus

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Sep 02 2022
Journal Name
Frontiers In Built Environment
Thermal analysis of horizontal earth-air heat exchangers in a subtropical climate: An experimental study
...Show More Authors

The earth-air heat exchanger (EHX) has a promising potential to passively save the energy consumption of traditional air conditioning systems while maintaining a high degree of indoor comfort. The use of EHX systems for air conditioning in commercial and industrial settings offers several environmental benefits and is capable of operating in both standalone and hybrid modes. This study tests the performance and effectiveness of an EHX design in a sandy soil area in Baghdad, Iraq. The area has a climate of the subtropical semi-humid type. Ambient air temperatures and soil temperatures were recorded throughout the months of 2021. During the months of January and June, the temperatures of the inlet and outflow air at varying air veloci

... Show More
View Publication
Scopus (10)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
The Influence of the Preparation and Stability of Nanofluids for Heat Transfer
...Show More Authors

Recently the use of nanofluids represents very important materials. They are used in different branches like medicine, engineering, power, heat transfer, etc. The stability of nanofluids is an important factor to improve the performance of nanofluids with good results. In this research two types of nanoparticles, TiO2 (titanium oxide) and γ-Al2O3 (gamma aluminum oxide) were used with base fluid water. Two-step method were used to prepare the nanofluids. One concentration 0.003 vol. %, the nanoparticles were examined. Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-ray diffraction (XRD) were used to accomplish these tests. The stability of the two types of nanofluids is measured by

... Show More
View Publication Preview PDF
Crossref (8)
Crossref
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of Mechanical Science And Technology
Optimization of a rectangular pin fin using elliptical perforations with different inclination angles
...Show More Authors

View Publication
Scopus (5)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Experimental Study of Power Increase Transient in Heat Generation Systems Simulated By Immersed Heat Source
...Show More Authors

Theoretical and experimental investigations of the transient heat transfer parameters of constant heat flux source subjected to water flowing in the downward direction in closed channel are conducted. The power increase transient is ensured by step change increase in the heat source power. The theoretical investigation involved a mathematical modeling for axially symmetric, simultaneously developing laminar water flow in a vertical annulus. The mathematical model is based on one dimensional downward flow. The boundary conditions of the studied case are based on adiabatic outer wall, while the inner wall is subjected to a constant heat flux. The heat & mass balance equation derived for specified element of bulk water within the annulu

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Parametric Study of Mixed Convective Radiative Heat Transfer in an Inclined Annulus
...Show More Authors

The steady state laminar mixed convection and radiation through inclined rectangular duct with an interior circular tube is investigated numerically for a thermally and hydrodynamicaly fully developed flow. The two heat transfer mechanisms of convection and radiation are treated independently and simultaneously. The governing equations which used are continuity, momentum and energy equations. These equations are normalized and solved using the Vorticity-Stream function and the Body Fitted Coordinates (B.F.C) methods. The finite difference approach with the Line Successive Over-Relaxation (LSOR) method is used to obtain all the computational results. The (B.F.C) method is used to generate the grid of the problem. A computer program (Fortr

... Show More
View Publication Preview PDF
Publication Date
Sat Jul 28 2018
Journal Name
Journal Of Engineering
Heat Transfer and Thermal Expansion of Coefficient EP -(MWCNT/x-TiO2)Nanocomposites
...Show More Authors

The thermal properties (thermal transfer and thermal expansion coefficient) of the enhanced epoxy resin (MWCNT / x-TiO2) were studied by weight ratios with the values (0%, 3%, 5%, 7% and 10%) and a constant ratio of 3% of MWCNT. The ultrasonic technology was used to prepare the neat and composites which were then poured into Teflon molds according to standard conditions. Thermo-analyzer sensor technology was used to measure thermal transfer (thermal conductivity, thermal flow, thermal diffusion, thermal energy and heat resistance). The thermal conductivity, flow, and thermal conductivity values were increased sequentially by increasing the weight ratio of the filler while the results of stored energy values an

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jul 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Theoretical Investigation of Charge Transfer Dynamics from Sensitized Molecule D35CPDT Dye to SnO_2 and TiO_2 Semiconductor
...Show More Authors

In this research, the dynamics process of charge transfer from the sensitized  D35CPDT dye to tin(iv) oxide( ) or titanium dioxide (  ) semiconductors are carried out by using a quantum model for charge transfer. Different chemical solvents Pyridine, 2-Methoxyethanol. Ethanol, Acetonitrile, and Methanol have been used with both systems as polar media surrounded the systems. The rate for charge transfer from photo-excitation D35CPDTdye and injection into the conduction band of  or  semiconductors vary from a  to  for system and from a   to  for the system, depending on the charge transfer parameters strength coupling, free energy, potential of donor and acceptor in the system. The charge transfer rate in D35CPDT /  the syst

... Show More
View Publication
Crossref
Publication Date
Thu Jul 28 2022
Journal Name
Mechanics Based Design Of Structures And Machines
Experimental investigation on the damping characteristics in dry and saturated sands
...Show More Authors

Scopus (6)
Crossref (6)
Scopus Clarivate Crossref