Geotechnical engineers have always been concerned with the stabilization of slopes. For this purpose,
various methods such as retaining walls, piles, and geosynthetics may be used to increase the safety factor of slopes prone to failure. The application of stone columns may also be another potential alternative for slope stabilization. Such columns have normally been used for cohesive soil improvement. Most slope analysis and design is based on deterministic approach i.e a set of single valued design parameter are adopted and a set of single valued factor of safety (FOS) is determined. Usually the FOS is selected in view of the understanding and knowledge of the material parameters, the problem geometry, the method of analysis and the consequences of failure. This results in different FOS obtained by different designers. This inherent variability characteristic dictates that slope stability problem is a probabilistic problem rather than deterministic problem. Furthermore, the FOS approach cannot quantify the probability of failure or level of risk associated with a particular design situation. The objective of this study is to integrate probabilistic approach as a rational means to incorporate uncertainty in the slope stability analysis. The study was made through a hypothetical problem which includes a sensitivity analysis. The methodology is based on Monte Carlo simulation integrated in commercially available computer program SLOPE/W. The output of the analysis is presented as the probability of failure as a measure of the likelihood of the slope failure. Results of this study have verified that the probability of failure is a better measure of slope stability as compared to the factor of safety because it provides a range of value rather than a single value.
Test results of nine reinforced concrete one way slab with and without lacing reinforcement are reported. The tests were designed to study the effect of the lacing reinforcement on the flexural response of one way slabs. The test parameters were considered is the lacing steel ratios of (0, 0.0025, 0.0045, and 0.0065), flexural steel ratios of (0.0025, 0.0045, and 0.0065) and span to the effective depth ratios of (11, 13, and 16). Two specimens had no lacing reinforcement and the remaining seven specimens had the lacing reinforcement. Four point bending test were carried out, one of the specimens was tested under the static load applied gradually up to failure and the other specimens were tested under repeated load (5 cyc
... Show MoreThis experimental study demonstrates the gable-reinforced concrete beams’ behavior with several number of openings (six and eight) and posts’ inclination, aimed to find the strength reduction in this type of beam. The major results found are: for the openings extending over similar beam length it is better to increase the number of posts (openings),
In this study, the mechanical properties of an epoxy and unidirectional woven carbon with fiberglass composite were experimentally investigated. When preparing the composite samples, American Society for Testing and Materials (ASTM)standard was used. Tensile, impact and flexural test were conducted to investigate the mechanical properties of the new produced epoxy Unidirectional Woven Carbon and Epoxy Fiberglass composites. The outcome showed that the strength of the produced samples increased with the increase in the number of unidirectional woven carbon layers added. Two methods were utilized: (1) woven carbon composite with glass fiber (2) woven carbon composite). The two methods of composite were compared with each other. The resul
... Show MoreCarbon-fiber-reinforced polymer (CFRP) is widely acknowledged as a leading advanced material structure, offering superior properties compared to traditional materials, and has found diverse applications in several industrial sectors, such as that of automobiles, aircrafts, and power plants. However, the production of CFRP composites is prone to fabrication problems, leading to structural defects arising from cycling and aging processes. Identifying these defects at an early stage is crucial to prevent service issues that could result in catastrophic failures. Hence, routine inspection and maintenance are crucial to prevent system collapse. To achieve this objective, conventional nondestructive testing (NDT) methods are utilized to i
... Show MoreAcrylic polymer/cement nanocomposites in dark and light colors have been developed for coating floors and swimming pools. This work aims to emphasize the effect of cement filling on the mechanical parameters, thermal stability, and wettability of acrylic polymer. The preparation was carried out using the casting method from acrylic polymer coating solution, which was added to cement nanoparticles (65 nm) with weight concentrations of (0, 1, 2, 4, and 8 wt%) to achieve high-quality specifications and good adhesion. Maximum impact strength and Hardness shore A were observed at cement ratios of 2 wt% and 4 wt%, respectively. Changing the filling ratio has a significant effect on the strain of the nanocomposites. The contact angle was i
... Show MoreThe present study aim at preparing frusemide in liquid form suitable for oral use. This is achieved through preparing different liquid forms of frusemide. The frusemide liquid is prepared in the following forms: oral solution, syrup and elixir with intensity of 1, 0.4 and 0.8% weight /volume respectively and in combination with potassium carbonate, polysorbate 80, alcohol and phosphate buffer solution of pH8 to dissolve the frusemide in the above mentioned forms. The different forms of the prepared medicine have been stored in glass bottles that can provide protection against light and at 40, 50, 600C for four months. Besides the pH has been checked to decide the period of validity. The results show that the expiration date of
... Show MoreMultiple eliminations (de-multiple) are one of seismic processing steps to remove their effects and delineate the correct primary refractors. Using normal move out to flatten primaries is the way to eliminate multiples through transforming these data to frequency-wavenumber domain. The flatten primaries are aligned with zero axis of the frequency-wavenumber domain and any other reflection types (multiples and random noise) are distributed elsewhere. Dip-filter is applied to pass the aligned data and reject others will separate primaries from multiple after transforming the data back from frequency-wavenumber domain to time-distance domain. For that, a suggested name for this technique as normal move out- frequency-wavenumber domain
... Show MoreExtreme conditions will cause the water level of high fill canal segment to change suddenly, which will affect the velocity and pore pressure of the slope. A 9 km irrigation earth canal in the city of Alsyahy, 15 km away from Al-Hilla city, and branching off from the left side of Shatt Al-Hilla at 57 km, was studied. The aim of this work is to study and analyze the effect of rationing system on the Birmana earthen canal during rapid drawdown case. Finite element modeling with Geo-Studio software was used in the present study to analyze the combined seepage and slope stability for three cycles. The resulting minimum safety factor obtained from the analysis using the saturated and
The indirect monetary policy tools led to financial stability for the period being studied through the use of indicators of financial stability (aggregate) to show the effect of the foreign reserves of the Central Bank of Iraq and its indirect instruments in achieving financial and economic stability, especially after the significant decline in oil prices and dependence of the Iraqi economy on Oil (rent) and lower reserves of the Central Bank of Iraq after 2014 and now compared to previous years, the goal of this research is to achieve financial stability according to selected indicators and achieve an optimal monetary policy to achieve the development goals of The economic policy in the country. Standard models were used to test
... Show More