Geotechnical engineers have always been concerned with the stabilization of slopes. For this purpose,
various methods such as retaining walls, piles, and geosynthetics may be used to increase the safety factor of slopes prone to failure. The application of stone columns may also be another potential alternative for slope stabilization. Such columns have normally been used for cohesive soil improvement. Most slope analysis and design is based on deterministic approach i.e a set of single valued design parameter are adopted and a set of single valued factor of safety (FOS) is determined. Usually the FOS is selected in view of the understanding and knowledge of the material parameters, the problem geometry, the method of analysis and the consequences of failure. This results in different FOS obtained by different designers. This inherent variability characteristic dictates that slope stability problem is a probabilistic problem rather than deterministic problem. Furthermore, the FOS approach cannot quantify the probability of failure or level of risk associated with a particular design situation. The objective of this study is to integrate probabilistic approach as a rational means to incorporate uncertainty in the slope stability analysis. The study was made through a hypothetical problem which includes a sensitivity analysis. The methodology is based on Monte Carlo simulation integrated in commercially available computer program SLOPE/W. The output of the analysis is presented as the probability of failure as a measure of the likelihood of the slope failure. Results of this study have verified that the probability of failure is a better measure of slope stability as compared to the factor of safety because it provides a range of value rather than a single value.
The question of estimation took a great interest in some engineering, statistical applications, various applied, human sciences, the methods provided by it helped to identify and accurately the many random processes.
In this paper, methods were used through which the reliability function, risk function, and estimation of the distribution parameters were used, and the methods are (Moment Method, Maximum Likelihood Method), where an experimental study was conducted using a simulation method for the purpose of comparing the methods to show which of these methods are competent in practical application This is based on the observations generated from the Rayleigh logarithmic distribution (RL) with sample sizes
... Show MoreStone Matrix Asphalt (SMA) is a gap-graded asphalt concrete hot blend combining high-quality coarse aggregate with a rich asphalt cement content. This blend generates a stable paving combination with a powerful stone-on-stone skeleton that offers excellent durability and routing strength. The objectives of this work are: Studying the durability performance of stone matrix asphalt (SMA) mixture in terms of moisture damage and temperature susceptibility and Discovering the effect of stabilized additive (Fly Ash ) on the performance of stone matrix asphalt (SMA) mixture. In this investigation, the durability of stone matrix asphalt concrete was assessed in terms of temperature susceptibility, resistance to moisture damage, and sensitivity t
... Show MoreExperimental programs based test results has been used as a means to find out the response of individual elements of structure. In the present study involves investigated behavior of five reinforced concrete deep beams of dimension (length 1200 x height 300 x width150mm) under two points concentrated load with shear span to depth ratio of (1.52), four of these beams with hallow core and
retrofit with carbon fiber reinforced polymer CFRP (with single or double or sides Strips). Two shapes of hallow are investigated (circle and square section) to evaluated the response of beams in case experimental behavior. Test on simply supported beam was performed in the laboratory & loaddeflection, strain of concrete data and crack pattern of
This research investigated the effect of adding two groups of reinforcement materials, including bioactive materials Hydroxyapatite (HA) and halloysite nanoclay and bioinert materials Alumina (AL2O3) and Zirconia (ZrO2), each of them with various weight ratios (1,2,3,4 &5)% to the polymer matrix PMMA. The best ratios were selected, and then a hybrid was preparing Composite red from the best ratios from each group. Thermal properties, including thermal conductivity and Thermomechanical Analysis (TMA) technology, have been studied. The results showed that adding 3% Hydroxyapatite (HA) and 5% halloysite nanoclay to the polymethacrylate (PMMA) mer leads to an increase in thermal conductivity. It was also found from the Thermomechanical Analysis
... Show MoreIn this paper, a Cholera epidemic model is proposed and studied analytically as well as numerically. It is assumed that the disease is transmitted by contact with Vibrio cholerae and infected person according to dose-response function. However, the saturated treatment function is used to describe the recovery process. Moreover, the vaccine against the disease is assumed to be utterly ineffective. The existence, uniqueness and boundedness of the solution of the proposed model are discussed. All possible equilibrium points and the basic reproduction number are determined. The local stability and persistence conditions are established. Lyapunov method and the second additive compound matrix are used to study the global stability of the system.
... Show MoreAbstract
The Phenomenon of Extremism of Values (Maximum or Rare Value) an important phenomenon is the use of two techniques of sampling techniques to deal with this Extremism: the technique of the peak sample and the maximum annual sampling technique (AM) (Extreme values, Gumbel) for sample (AM) and (general Pareto, exponential) distribution of the POT sample. The cross-entropy algorithm was applied in two of its methods to the first estimate using the statistical order and the second using the statistical order and likelihood ratio. The third method is proposed by the researcher. The MSE comparison coefficient of the estimated parameters and the probability density function for each of the distributions were
... Show MoreThe present paper concerns with the problem of estimating the reliability system in the stress – strength model under the consideration non identical and independent of stress and strength and follows Lomax Distribution. Various shrinkage estimation methods were employed in this context depend on Maximum likelihood, Moment Method and shrinkage weight factors based on Monte Carlo Simulation. Comparisons among the suggested estimation methods have been made using the mean absolute percentage error criteria depend on MATLAB program.
The general approach of this research is to assume that the small nonlinearity can be separated from the linear part of the equation of motion. The effect of the dynamic fluid force on the pump structure system is considered vibrates at its natural frequency but the amplitude is determined by the initial conditions. If the motion of the system tends to increase the energy of the pump structure system, the vibration amplitude will increase and the pump structure system is considered to be unstable. A suitable MATLAB program was used to predict the stability conditions of the pump structure vibration. The present research focuses on fluid pump problems, namely, the role played by damping coefficient C, damping factor
... Show More