The present work reports a direct experimental comparison of the catalytic hydrodesulfurization of
thiophene over Co-Mo/Al2O3 in fixed- and fluidized-bed reactors under the same conditions. An
experimental pilot plant scale was constructed in the laboratories of chemical engineering department,
Baghdad University; fixed-bed unit (2.54 cm diameter, and 60cm length) and fluidized-bed unit (diameter of 2.54 cm and 40 cm long with a separation zone of 30 cm long and 12.7 cm diameter). The affecting
variables studied in the two systems were reaction temperature of (308 – 460) oC, Liquid hourly space
velocity of (2 – 5) hr-1, and catalyst particle size of (0.075-0.5) mm. It was found in both operations that the
conversion increases with increasing of reaction temperature, slightly decreases with increasing of liquid
hourly space velocity and not affected by particle size. Also a kinetic analysis was performed for thiophene
hydrodesulfurization reaction in fixed bed reactor and the results indicate that the reaction kinetics are not affected by pore and film diffusion limitations. The results of the comparison between the two reactors indicate that a low conversion was obtained in a fluidized bed than in fixed bed over the range of conditions studied. The lower conversion can be attributed to the gas that bypasses the bed in the form of bubbles or channels.
The Electric Discharge (EDM) method is a novel thermoelectric manufacturing technique in which materials are removed by a controlled spark erosion process between two electrodes immersed in a dielectric medium. Because of the difficulties of EDM, determining the optimum cutting parameters to improve cutting performance is extremely tough. As a result, optimizing operating parameters is a critical processing step, particularly for non-traditional machining process like EDM. Adequate selection of processing parameters for the EDM process does not provide ideal conditions, due to the unpredictable processing time required for a given function. Models of Multiple Regression and Genetic Algorithm are considered as effective methods for determ
... Show MoreThe electrocardiogram (ECG) is the recording of the electrical potential of the heart versus time. The analysis of ECG signals has been widely used in cardiac pathology to detect heart disease. The ECGs are non-stationary signals which are often contaminated by different types of noises from different sources. In this study, simulated noise models were proposed for the power-line interference (PLI), electromyogram (EMG) noise, base line wander (BW), white Gaussian noise (WGN) and composite noise. For suppressing noises and extracting the efficient morphology of an ECG signal, various processing techniques have been recently proposed. In this paper, wavelet transform (WT) is performed for noisy ECG signals. The graphical user interface (GUI)
... Show MoreVisualization of water flow around different bluff bodies at different Reynolds number ranging (1505 - 2492) was realized by designing and building a test rig which contains an open channel capable to ensure water velocity range (4-8cm/s) in this channel. Hydrogen bubbles generated from the ionized water using DC power supply are visualized by a light source and photographed by a digital camera. Flow pattern around a circular disk of (3.6cm) diameter and (3mm) thickness, a sphere of (3.8cm) diameter and a cylinder of
(3.2cm) diameter and (10cm) length are studied qualitatively. Parameters of the vortex ring generated in the wake region of the disk and the separation angle of water stream lines from the surface of the sphere are plott
Flow-production systems whose pieces are connected in a row may not have maintenance scheduling procedures fixed because problems occur at different times (electricity plants, cement plants, water desalination plants). Contemporary software and artificial intelligence (AI) technologies are used to fulfill the research objectives by developing a predictive maintenance program. The data of the fifth thermal unit of the power station for the electricity of Al Dora/Baghdad are used in this study. Three stages of research were conducted. First, missing data without temporal sequences were processed. The data were filled using time series hour after hour and the times were filled as system working hours, making the volume of the data relativel
... Show Moreفي السنوات الأخيرة، أدى التقدم التكنولوجي في إنترنت الأشياء (IoT) وأجهزة الاستشعار الذكية إلى فتح اتجاهات جديدة وإعطاء حلول عملية في مختلف قطاعات الحياة. يتم التعرف على إنترنت الأشياء كتنولوجيا حديثة تربط بين مختلف انواع الشبكات. تم تحسين أنواع مختلفة من قطاعات الرعاية الصحية في المجال الطبي بناءً على هذه التكنولوجيا. أحد هذه القطاعات الهامة هو نظام مراقبة الصحة (HMS). تعتبر مراقبة المريض عن بعد لاسلكيًا وبت
... Show MoreCorrosion experiments were carried out to investigate the effect of several operating parameters on the corrosion rate and corrosion potential of carbon steel in turbulent flow conditions in the absence and presence of sodium benzoate inhibitor using electrochemical polarization technique. These parameters were rotational velocity (0 - 1.57 m/s), temperature (30oC – 50oC), and time. The effect of these parameters on the corrosion rate and inhibition efficiency were investigated and discussed. It was found that the corrosion rate represented by limiting current increases considerably with increasing velocity and temperature and that it decreased with time due to the formation of corrosion product layer. The corrosion potential shifted t
... Show MoreFeature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall
... Show MoreThe inverse kinematics of redundant manipulators has infinite solutions by using conventional methods, so that, this work presents applicability of intelligent tool (artificial neural network ANN) for finding one desired solution from these solutions. The inverse analysis and trajectory planning of a three link redundant planar robot have been studied in this work using a proposed dual neural networks model (DNNM), which shows a predictable time decreasing in the training session. The effect of the number of the training sets on the DNNM output and the number of NN layers have been studied. Several trajectories have been implemented using point to point trajectory planning algorithm with DNNM and the result shows good accuracy of the end
... Show More