Preferred Language
Articles
/
joe-2887
BEHAVIOR OF CONCRETE BEAMS REINFORCED IN SHEAR WITH CARBON FIBER REINFORCED POLYMER
...Show More Authors

Carbon fiber reinforced polymers (CFRP) were widely used in strengthening reinforced concrete members
in the last few years, these fibers consist mainly of high strength fibers which increase the member capacity in addition to changing the mode of failure of the reinforced concrete beams. Experimental and theoretical investigations were carried to find the behavior of reinforced concrete beams strengthened by CFRP in shear and bending. The experimental work included testing of 12 beams divided into 4 groups; each group contains 3 beams. The following parameters were taken into consideration: - Concrete crushing strength. - CFRP strengthening location (shear strengthening and both shear and flexure strengthening). Reinforced beams were simply supported subjected to two point loads. Each group consists of three beams; the first beam without CFRP, the second one, is strengthened with CFRP in shear and the third is strengthened with CFRP in both flexure and shear. Four groups with different crushing strength of (12, 20, 30 and 39 MPa). The CFRP sheets are attached externally.
It was found that in beam with low crushing strength loads transfer to the CFRP at early stages while in
those of high crushing strength, CFRP contribution only starts when full strength of the beam is fulfilled. A
full bond between CFRP sheets and the concrete is assumed in the theoretical analysis. Comparison between the theoretical and the experimental results revealed the validity of the numerical analysis and the developed methods such that there was a difference of 13% in the ultimate strength for the tested and analyzed beams.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 09 2025
Journal Name
Petroleum And Coal
Extraction and Analysis of Compressional, Shear, and Stoneley Slowness, Rock Mechanical Properties, and Shear Anisotropy Using Sonic Scanner Data
...Show More Authors

The Sonic Scanner is a multifunctional instrument designed to log wells, assess elastic characteristics, and support reservoir characterisation. Furthermore, it facilitates comprehension of rock mechanics, gas detection, and well positioning, while also furnishing data for geomechanical computations and sand management. The present work involved the application of the Sonic Scanner for both basic and advanced processing of oil-well-penetrating carbonate media. The study aimed to characterize the compressional, shear, Stoneley slowness, rock mechanical properties, and Shear anisotropy analysis of the formation. Except for intervals where significant washouts are encountered, the data quality of the Monopole, Dipole, and Stoneley modes is gen

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
8th Engineering And 2nd International Conference For College Of Engineering – University Of Baghdad: Coec8-2021 Proceedings
Finite element modeling of concavely curved soffit RC beams externally strengthened with FRP
...Show More Authors

View Publication
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
8th Engineering And 2nd International Conference For College Of Engineering – University Of Baghdad: Coec8-2021 Proceedings
Effect of permeation grouting with nano-materials on shear strength of sandy soil: An experimental study
...Show More Authors

View Publication
Crossref (4)
Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Al-kindy College Medical Journal
Radiological Significance of Shear-Wave Elastography Technique for Evaluation of Solid Breast Masses with Histopathological Correlation
...Show More Authors

Background: Although various imaging modalities are available for evaluating suspicious breast lesions, ultrasound-based Shear-Wave Elastography (SWE) is an advanced, non-invasive technique complementary to grayscale sonography. This technique evaluates the elasticity of a specific tissue by applying sonic pressure to that tissue.

Objective: The aim is to assess the role of SWE in evaluating solid breast masses in correlation to histopathological study results.

Subjects and Methods: This prospective study was done in a tertiary care teaching hospital from September 2019 to August 2020. A study population of 50 women aged 18 years or above with an

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Tue Feb 12 2019
Journal Name
Iraqi Journal Of Physics
Linear attenuation coefficient measurement in polymer composite
...Show More Authors

Linear attenuation coefficient of polymer composite for beta particles and bremsstrahlung ray were investigated as a function of the absorber thickness and energy. The attenuation coefficient were obtained using NaI(Tl) energy selective scintillation counter with 90Sr/90Y beta source having an energy range from 0.1-1.1 MeV. The present results show the capability of this composite to absorber beta particles and bremsstrahlung ray that yield from it. That’s mean it is useful to choice this composite for radiation shielding of beta ray with low thickness.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Dec 31 2015
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of Shear Wave velocity for carbonate rocks
...Show More Authors

In many oil fields only the BHC logs (borehole compensated sonic tool) are available to provide interval transit time (Δtp), the reciprocal of compressional wave velocity VP.

   To calculate the rock elastic or inelastic properties, to detect gas-bearing formations, the shear wave velocity VS is needed. Also VS is useful in fluid identification and matrix mineral identification.

   Because of the lack of wells with shear wave velocity data, so many empirical models have been developed to predict the shear wave velocity from compressional wave velocity. Some are mathematical models others used the multiple regression method and neural network technique.

   In this study a number of em

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 01 2015
Journal Name
Journal Of Engineering
Punching Shear Strength of Self Compacted Ferrocement Slabs
...Show More Authors

This study aims to investigate the behavior and strength of self-compacted ferrocement slabs under punching shear load. Experimental results of thirteen square ferrocement slabs of 500×500 mm simply supported on all edges are presented.  The main parameters investigated include the volume fraction of reinforcement, slab thickness and size of load-bearing plate. The load deflection and cracking characteristics of the tested slabs are studied and compared.  The test results showed that the volume fraction of wire mesh has significant effect on both ultimate load and displacement. The increase of slab thickness leads to decrease in deflection values and increase in stiffness of slabs. Both ductility and stiffness increase as the

... Show More
View Publication Preview PDF
Publication Date
Wed Sep 01 2021
Journal Name
Iraqi Journal Of Physics
Surface Plasmon Plastic Optical Fiber Resonance with Multi-Layer as Chemical Sensor
...Show More Authors

A chemical optical fiber sensor based on surface plasmon resonance (SPR) was developed and implemented using multimode plastic optical fiber. The sensor is used to detect and measure the refractive index and concentration of various chemical materials (Urea, Ammonia, Formaldehyde and Sulfuric acid) as well as to evaluate the performance parameters such as sensitivity, signal to noise ratio, resolution and figure of merit. It  was noticed that the value of the sensitivity of the optical fiber-based SPR sensor, with 60nm and 10 mm long, Aluminum(Al) and Gold (Au) metals film exposed sensing region, was 4.4 μm, while the SNR was 0.20, figure of merit was 20 and resolution 0.00045. In this work a multimode

... Show More
View Publication Preview PDF
Crossref (10)
Crossref
Publication Date
Thu Feb 08 2024
Journal Name
Engineering, Technology & Applied Science Research
Mitigating Reflection Cracking in Asphalt Concrete Overlays with ECC and Geotextile
...Show More Authors

The rehabilitation of deteriorated pavements using Asphalt Concrete (AC) overlays consistently confronts the reflection cracking challenge, where inherent cracks and joints from an existing pavement layer are mirrored in the new overlay. To address this issue, the current study evaluates the effectiveness of Engineered Cementitious Composite (ECC) and geotextile fabric as mitigation strategies. ECC, characterized by its tensile ductility, fracture resistance, and high deformation capacity, was examined in interlayer thicknesses of 7, 12, and 17 mm. Additionally, the impact of geotextile fabric positioning at the base and at 1/3 depth of the AC specimen was explored. Utilizing the Overlay Testing Machine (OTM) for evaluations, the research d

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 03 2021
Journal Name
Structural Concrete
Finite element analysis of rectangular RC beams strengthened with FRP laminates under pure torsion
...Show More Authors

Scopus (20)
Crossref (16)
Scopus Clarivate Crossref