In this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, with a
good degree of accuracy reaching 97.26, 95.92 and 86.43% respectively. These ANN models could be used as a support for workers in operating the filters in water treatment plants and to improve water treatment process. With the use of ANN, water systems will get more efficient, so reducing operation cost and improving the quality of the water produced.
Physical measurements are one of the basic factors that affect the performance of the goalkeeper, especially when confronting fixed kicks that require special skills such as the reaction and accuracy in concentration, and with technological development artificial intelligence has become an effective tool for analyzing mathematical data that is difficult to discover in traditional methods The study aims to employ techniques Artificial intelligence to study the relationship between physical measurements and the accuracy of confronting the fixed kicks of goalkeepers in football. This study will contribute to providing a deeper understanding of physical factors that affect the performance of goalkeepers, in addition to designing dedicat
... Show MoreThis study sought to investigate the impacts of big data, artificial intelligence (AI), and business intelligence (BI) on Firms' e-learning and business performance at Jordanian telecommunications industry. After the samples were checked, a total of 269 were collected. All of the information gathered throughout the investigation was analyzed using the PLS software. The results show a network of interconnections can improve both e-learning and corporate effectiveness. This research concluded that the integration of big data, AI, and BI has a positive impact on e-learning infrastructure development and organizational efficiency. The findings indicate that big data has a positive and direct impact on business performance, including Big
... Show MoreAbstract This study explores the extent to which public relations (PR) departments within Traqj governmental institutions are integrating artificial intelligence (AI) applications into their communication activities. The research adresses the growing importanc of AI in enhancing administrative efficieney, communication transparency, and stakeholder engagement. Adopting a descriptive research design, the study relied on an electtonic questionnaire distributed to PR profesionals across various ministries and government bodies, collecting 100 valid responses. The indings reveal that while younger PR practitioners are actively embracing AI, older employees show limited engagement. Most participants acquired AI-related skills through self- learn
... Show MoreRice is a major staple food for more than two thirds of the world population. Pathogenesis-related proteins-10 (PR10) have a range of 154 to 163 amino acid with molecular weight ~ 17 kDa. They are acidic and generally intracellular and cytosolic proteins accumulate in plants in response to biotic and abiotic stresses. In the present study, a PR10 gene and its corresponding protein were characterized in O. sativa, O. barthii, O. glaberrima, O. glumipatula, O. meridionalis, O. nivara, O. rufipogon and O. punctata. The results revealed a narrow range of variation at both DNA and protein levels in all examined species except O. glumipatula. The latter showed a relatively
... Show MoreIn this study, biodiesel was prepared from chicken fat via a transesterification reaction using Mussel shells as a catalyst. Pretreatment of chicken fat was carried out using non‐catalytic esterification to reduce the free fatty acid content from 36.28 to 0.96 mg KOH/g oil using an ethanol/ fat mole ratio equal to 115:1. In the transesterification reaction, the studied variables were methanol: oil mole ratio in the range of (6:1 ‐ 30:1), catalyst loading in the range of (9‐15) wt%, reaction temperature (55‐75 °C), and reaction time (1‐7) h. The heterogeneous alkaline catalyst was greenly synthesized from waste mussel shells throughout a calcin
In this study, biodiesel was prepared from chicken fat via a transesterification reaction using Mussel shells as a catalyst. Pretreatment of chicken fat was carried out using non‐catalytic esterification to reduce the free fatty acid content from 36.28 to 0.96 mg KOH/g oil using an ethanol/ fat mole ratio equal to 115:1. In the transesterification reaction, the studied variables were methanol: oil mole ratio in the range of (6:1 ‐ 30:1), catalyst loading in the range of (9‐15) wt%, reaction temperature (55‐75 °C), and reaction time (1‐7) h. The heterogeneous alkaline catalyst was greenly synthesized from waste mussel shells throughout a calcin
In this work, we have developed a model that describes the relationships between top predators (such as tigers, hyenas, and others), crop raiders (such as baboons, warthogs, and deer), and prey (such as deer) in the coffee forests of southwest Ethiopia. Various potential equilibrium points are identified. Additionally, the model's stability in the vicinity of these equilibrium points is examined. An investigation of the model's Hopf bifurcation is conducted concerning several significant parameters. It is found that prey species may be extinct due to a lower growth rate and consumption by top predators in the absence of human interference in the carrying capacity of prey. It is observed that top predators may be extinct due to human interfe
... Show MoreThis paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi
The Evolution Of Information Technology And The Use Of Computer Systems Led To Increase Attention To The Use Of Modern Techniques In The Auditing Process , As It Will Overcome Some Of The Human Shortcomings In The Exercise Of Professional Judgment, Then It Can Improve The Efficiency And Effectiveness Of The Audit Process, Where The New Audit Methodologies Espouse The Concept Of Risk Which Includes Strategic Dimension With Regard To The Capacity Of The Entity To Achieve Its Goals, Which Requires Auditors To Rely On Advanced Technology That Can Identify The Factors Which Prevent The Entity From Achieving Its Objectives. The Idea Of Research Is To Preparing An Electronic Program Fer All Audit Work From Planning Through Sampling And Document
... Show More