Current numerical research was devoted to investigating the effect of castellated steel beams without and with strengthening. The composite concrete asymmetrical double hot rolled steel channels bolted back to back to obtain a built-up I-shape form are used in this study. The top half part of the steel is smaller than the bottom half part, and the two parts were connected by bolting and welding. The ABAQUS/2019 program employed the same length and conditions of loading for four models: The first model is the reference without castellated and strengthening; the second model was castellated without strengthened; the third model was castellated and strengthened with reactive powder concrete encased in the steel web, and the fourth model was castellated and strengthened with reactive powder concrete and lacing steel rebar's welded diagonally on two sides of the steel web. According to the Numerical results, there was an increase in ultimate load capacity compared to the reference model of about 22.74%, 51.65%, and 77.98% in the second, third, and fourth models, respectively; also, there is a reduction in deflection of 55.52%, 58.74, and 60.55% in the second, third, and fourth models, respectively, compared to the level deflection at ultimate load for the reference model, with an increase in stiffness and ductility. In comparison to the I section, the fabrication of a castellated steel beam from the double channel is more cost-effective in terms of cutting steel loss at the ends of the castellated beam, this is due to the feature of rotation and reflection of the steel channel section during cutting and forming to castellated shape.
Different parameters of double pipe helical coil were investigation experimentally. Four coils were used; three with a curvature ratio (0.037, 0.031, and 0.028) and 11mm diameter of the inner tube while the fourth with 0.033 curvature ratio and 13 mm diameter of the inner tube. The hot water flow in the inner tube whereas the cold water flows in the annulus. The inlet temperatures of hot and cold water are 50 0C and 18 0C respectively. The inner mass flow rate ranges from 0.0167 to 0.0583 kg/s. The results show the Nusselt number increase with increase curvature ratio. The Nusselt number of the coil with 0.037 curvature ratio increases by approximately 12.3 % as compare with 0.028 curvature ratio. The results also r
... Show MoreAn oxidative polymerization approach was used to create polyaniline (PANI) and Fe2O3 /PANI nanoparticle combination. Various characterization approaches were used to investigate the structural, morphological, and Fe2O3 /PANI nanoparticle structures. The findings support the synthesis of polycrystalline nanoparticle PANI and Fe2O3 /PANI spherical nanoparticle composites. Gram-positive bacteria are tested for antibacterial activity. Various quantities of Nanoparticles of PANI and Fe2O3 /PANI nanoparticle composites were used to test Staph-aureus and gram-negative bacteria, E-coli, and candida species. PANI has antibacterial properties against all microo
... Show MoreA flexible pavement structure usually comprises more than one asphalt layer, with varying thicknesses and properties, in order to carry the traffic smoothly and safely. It is easy to characterize each asphalt layer with different tests to give a full description of that layer; however, the performance of the whole; asphalt structure needs to be properly understood. Typically, pavement analysis is carried out using multi-layer linear elastic assumptions, via equations and computer programs such as KENPAVE, BISAR, etc. These types of analysis give the response parameters including stress, strain, and deflection at any point under the wheel load. This paper aims to estimate the equivalent Resilient Modulus (MR) of the asphalt concrete
... Show MoreA flexible pavement structure usually comprises more than one asphalt layer, with varying thicknesses and properties, in order to carry the traffic smoothly and safely. It is easy to characterize each asphalt layer with different tests to give a full description of that layer; however, the performance of the whole; asphalt structure needs to be properly understood. Typically, pavement analysis is carried out using multi-layer linear elastic assumptions, via equations and computer programs such as KENPAVE, BISAR, etc. These types of analysis give the response parameters including stress, strain, and deflection at any point under the wheel load. This paper aims to estimate the equivalent Resilient Modulus (MR) of the asphalt concrete
... Show MoreThe local asphalt concrete fracture properties represented by the fracture energy, J-integral, and stress intensity factor are calculated from the results of the three point bending beam test made for pre notches beams specimens with deformation rate of 1.27 mm/min. The results revealed that the stress intensity factor has increased by more than 40% when decreasing the testing temperature 10˚C and increasing the notch depth from 5 to 30mm. The change of asphalt type and content have a limited effect of less than 6%.
Roller Compacted Concrete (RCC) is a technology characterized mainly by the use of rollers for compaction; this technology achieves significant time and cost savings in the construction of dams and roads. The primary scope of this research is to study the durability and performance of roller compacted concrete that was constructed in the laboratory using roller compactor manufactured in local market. A total of (60) slab specimen of (38×38×10) cm was constructed using the roller device, cured for 28 days, then 180 sawed cubes and 180 beams are obtained from RCC slab. Then, the specimens are subjected to 60 cycles of freezing and thawing, sulfate attack test and wetting and drying. The degree of effect of the type of coarse aggregate (c
... Show MoreIn the present work a theoretical analysis depending on the new higher order . element in shear deformation theory for simply supported cross-ply laminated plate is developed. The new displacement field of the middle surface expanded as a combination of exponential and trigonometric function of thickness coordinate with the transverse displacement taken to be constant through the thickness. The governing equations are derived using Hamilton’s principle and solved using Navier solution method to obtain the deflection and stresses under uniform sinusoidal load. The effect of many design parameters such as number of laminates, aspect ratio and thickness ratio on static behavior of the laminated composite plate has been studied. The
... Show MoreThis Investigation aims to study the effect of adding Steel fibers with different volume fractions Vf (o.5, 0.75, and 1% by volume of concrete) with aspect ratio 100 on mechanical properties of concrete, and also
finding the influence of petroleum products (Kerosene and Diesel) on mechanical properties of Steel Fiber Reinforced Concrete (SFRC).
The experimental work consists of two groups: group one consists of specimens (cubes and prisms) plain and concrete reinforced with steel fiber exposed to continuous curing with water. Group two consists of
specimens (cubes and prisms) plain and concrete reinforced with steel fiber exposed to kerosene and diesel after curing them in water for 28 days before exposure. The results of all te
In this study, experimental and numerical applied of heat distribution due to pulsed Nd: YAG laser surface melting. Experimental side was consists of laser parameters are, pulse duration1.3
This paper is dealing with non-polynomial spline functions "generalized spline" to find the approximate solution of linear Volterra integro-differential equations of the second kind and extension of this work to solve system of linear Volterra integro-differential equations. The performance of generalized spline functions are illustrated in test examples