In this study, the sonochemical degradation of phenol in water was investigated using two types of ultrasonic wave generators; 20 kHz ultrasonic processor and 40 kHz ultrasonic cleaner bath. Mineralization rates were determined as a function of phenol concentration, contact time, pH, power density, and type of ultrasonic generator. Results revealed that sonochemical degradation of the phenol conversion was enhanced at increased applied power densities and acidic conditions. At 10 mg/L initial concentration of phenol, pH 7, and applied power density of 3000 W/L, the maximum removal efficiency of phenol was 93% using ultrasonic processor at 2h contact time. Whereby, it was 87% using and ultrasonic cleaner bath at 16h contact time and 150 W/L power density. Kinetic models applied to the sonolysis of phenol was evaluated for the first-order, pseudo-first-order, second- order, and pseudo-second-order kinetic models. The experimental data fitted very well the first-order kinetic model.
This paper presents on the design of L-Band Multiwavelength laser for Hybrid Time Division Multiplexing/ Wavelength Division Multiplexing (TDM/WDM) Passive Optical Network (PON) application. In this design, an L-band Mulltiwavelength Laser is designed as the downstream signals for TDM/WDM PON. The downstream signals ranging from 1569.865 nm to 1581.973 nm with 100GHz spacing. The multiwavelength laser is designed using OptiSystem software and it is integrated into a TDM/WDM PON that is also designed using OptiSystem simulation software. By adapting multiwavelength fiber laser into a TDM/WDM network, a simple and low-cost downstream signal is proposed. From the simulation design, it is found that the proposed design is suitable to be used
... Show MoreThin films of vanadium oxide nanoparticles doped with different concentrations of europium oxide (2, 4, 6, and 8) wt % are deposited on glass and Si substrates with orientation (111) utilizing by pulsed laser deposition technique using Nd:YAG laser that has a wavelength of 1064 nm, average frequency of 6 Hz and pulse duration of 10 ns. The films were annealed in air at 300 °C for two hours, then the structural, morphological and optical properties are characterized using x-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and UV-Vis spectroscopy respectively. The X-ray diffraction results of V2O5:Eu2O3 exhibit that the film has apolycrystalline monoclinic V2O5 and triclinic V4O7 phases. The FESEM image shows a h
... Show MoreFG Mohammed, HM Al-Dabbas, Iraqi journal of science, 2018 - Cited by 6
The accumulation of sediment in reservoirs poses a major challenge that impacts the storage capacity, quality of water, and efficiency of hydroelectric power generation systems. Geospatial methods, including Geographic Information Systems (GIS) and Remote Sensing (RS), were used to assess Dukan Reservoir sediment quantities. Satellite and reservoir water level data from 2010 to 2022 were used for sedimentation assessment. The satellite data was used to analyze the water spread area, employing the Normalized Difference Water Index (NDWI) and Modified Normalized Difference Water Index (MNDWI) to enhance the water surface in the satellite imagery of Dukan Reservoir. The cone formula was employed to calculate the live storag
... Show MoreObjectives Bromelain is a potent proteolytic enzyme that has a unique functionality makes it valuable for various therapeutic purposes. This study aimed to develop three novel formulations based on bromelain to be used as chemomechanical caries removal agents. Methods The novel agents were prepared using different concentrations of bromelain (10–40 wt. %), with and without 0.1–0.3 wt. % chloramine T or 0.5–1.5 wt. % chlorhexidine (CHX). Based on the enzymatic activity test, three formulations were selected; 30 % bromelain (F1), 30 % bromelain-0.1 % chloramine (F2) and 30 % bromelain-1.5 % CHX (F3). The assessments included molecular docking, Fourier-transform infrared spectroscopy (FTIR), viscosity and pH measurements. The efficiency
... Show MoreObjectives: Bromelain is a potent proteolytic enzyme that has a unique functionality makes it valuable for various therapeutic purposes. This study aimed to develop three novel formulations based on bromelain to be used as chemomechanical caries removal agents. Methods: The novel agents were prepared using different concentrations of bromelain (10–40 wt. %), with and without 0.1–0.3 wt. % chloramine T or 0.5–1.5 wt. % chlorhexidine (CHX). Based on the enzymatic activity test, three formulations were selected; 30 % bromelain (F1), 30 % bromelain-0.1 % chloramine (F2) and 30 % bromelain-1.5 % CHX (F3). The assessments included molecular docking, Fourier-transform infrared spectroscopy (FTIR), viscosity and pH measurements. The efficie
... Show MoreIn this work the design and application of a fuzzy logic controller to DC-servomotor is investigated. The proposed strategy is intended to improve the performance of the original control system by use of a fuzzy logic controller (FLC) as the motor load changes. Computer simulation demonstrates that FLC is effective in position control of a DC-servomotor comparing with conventional one.
Most of the cinema and television production relies on the use of modern digital technologies, which today become the as ideal as the artistic expressive style that sends aesthetic values through the use of electronic elements of the language of cinema and television to achieve aesthetic dazzling, and design the digital production for the purpose of persuasion, as well as the use of digital effects and graphics to activate the aesthetic pleasure. The research tries to subject all these aspetcs to study and apply them to a modern sample in order to get the results that confirm this technical and artistic aesthetic synergy that leads to the emergence of a cinema and television achievement the leas
... Show MoreThe study involved the removal of acidity from free fatty acid via the esterification reaction of oleic acid with ethanol. The reaction was done in a batch reactor using commercial 13X zeolite as a catalyst. The effects of temperatures (40 to 70 °C) and reaction time (up to 120 minutes) were studied using 6:1 mole ratio of pure ethanol to oleic acid and 5 wt. % of the catalyst. The results showed that acid removed increased with increasing temperature and reaction time. Also, the acidity removal rises sharply during the first reaction period and then changes slightly afterward. The highest acidity removal value was 67 % recorded at 110 minutes and 70 °C. An apparent homogeneous reversible reaction kinetic model has been proposed a
... Show More