The main objective of this work is to propose a new routing protocol for wireless sensor network employed to serve IoT systems. The routing protocol has to adapt with different requirements in order to enhance the performance of IoT applications. The link quality, node depth and energy are used as metrics to make routing decisions. Comparison with other protocols is essential to show the improvements achieved by this work, thus protocols designed to serve the same purpose such as AODV, REL and LABILE are chosen to compare the proposed routing protocol with. To add integrative and holistic, some of important features are added and tested such as actuating and mobility. These features are greatly required by some of IoT applications and improving the routing protocol to support them makes it more suitable for IoT systems.
The proposed routing protocol is simulated using Castalia-3.2 and all the cases are examined to show the enhancement that achieved by each case. The proposed routing protocol shows better performance than other protocols do regarding Packet Delivery Ratio (PDR) and latency. It preserves network reliability since it does not generate routing or data packets needlessly. Routing protocol with added features (actuating and mobility) shows good performance. But that performance is affected by increasing the speed of mobile nodes.
Functionalized-multi wall carbon nanotubes (F-MWCNTs) and functionalized-single wall carbon nanotubes (F-SWCNTs) were well enhanced using CoO Nanoparticles. The sensor device consisted of a film of sensitive material (F-MWCNTs/CoONPs) and (F-SWCNTs/CoO NPs) deposited by drop- casting on an n-type porous silicon substrate. The two sensors perform high sensitivity to NO2 gas at room temperatures. The analysis indicated that the (F-MWCNTs/CoONPs) have a better performance than (F-SWCNTs/CoONPs). The F-SWCNTs/CoONPs gas sensor shows high sensitivity (19.1 %) at RT with response time 17 sec, while F-MWCNTs/CoONPs gas sensor show better sensitivity (39 %) at RT with response time 13 sec. The device shows a very reproducible sensor p
... Show MoreThe physical and morphological characteristics of porous silicon (PS) synthesized via gas sensor was assessed by electrochemical etching for a Si wafer in diluted HF acid in water (1:4) at different etching times and different currents. The morphology for PS wafers by AFM show that the average pore diameter varies from 48.63 to 72.54 nm with increasing etching time from 5 to 15min and from 72.54 to 51.37nm with increasing current from 10 to 30 mA. From the study, it was found that the gas sensitivity of In2O3: CdO semiconductor, against NO2 gas, directly correlated to the nanoparticles size, and its sensitivity increases with increasing operating temperature.
The present work focuses on the experimental implementation of one of the fiber optical sensors, the optical glass fiber built on surface Plasmon resonance. A type of optical glass fiber was used in this work, single-mode no-core fiber with pre-tapering diameter: (125.1 μm) and (125.3 μm), respectively. The taper method can be tested by measuring the output power of the optical fiber before and after chemical etching to show the difference in cladding diameter due to the effect of hydrofluoric acid with increasing time for the taper process. The optical glass fiber sensor can be fabricated using the taper method to reduce the cladding diameter of the fibers to (83.12 µm, 64.37 µm, and 52.45 µm) for single-mode fibers using Hydrofluoric
... Show MoreThe present study aims at examining quantitatively the morphometric characteristics of Iziana Valley basin that is located in the northern part of Iraq; particularly in south of Erbil Governorate. This basin is considered one of the small sub-basins where its valleys run on formations of the Triple and Quadrant Ages, which are represented by the Bay Hassan formations, and the sediments and mixed sediments of the cliffs, respectively. The area of the Iziana basin amounts to (36.39 km2) whereas the percentage of its rotation reaches (0.17); a low percentage, which indicates that the basin diverges from the circular to the rectangular shape. The value of the elongation ratio of the basin reaches (0.38) while the terrain rat
... Show MoreCoaches and analysts face a significant challenge of inaccurate estimation when analyzing Men's 100 Meter Sprint Performance, particularly when there is limited data available. This necessitates the use of modern technologies to address the problem of inaccurate estimation. Unfortunately, current methods used to estimate Men's 100 Meter Sprint Performance indexes in Iraq are ineffective, highlighting the need to adopt new and advanced technologies that are fast, accurate, and flexible. Therefore, the objective of this study was to utilize an advanced method known as artificial neural networks to estimate four key indexes: Accelerate First of 10 meters, Speed Rate, Time First of 10 meters, and Reaction Time. The application of artifi
... Show MoreAngle of arrival (AOA) estimation for wideband signal becomes more necessary for modern communication systems like Global System for Mobile (GSM), satellite, military applications and spread spectrum (frequency hopping and direct sequence). Most of the researchers are focusing on how to cancel the effects of signal bandwidth on AOA estimation performance by using a transversal filter (tap delay line) (TDL). Most of the researchers were using two elements array antenna to study these effects. In this research, a general case of proposed (M) array elements is used. A transversal filter (TDL) in phase adaptive array antenna system is used to calculate the optimum number of taps required to compensate these effect. The propo
... Show MorePhotonic Crystal Fiber Interferometers (PCFIs) are greatly used
for sensing applications. This work presents the fabrication and
characterization of a relative humidity sensor based on Mach-
Zehnder Interferometer (MZI), which operates in reflection mode.
The humidity sensor operation based on the adsorption and
desorption of water vapour at the silica-air interface within the PCF.
The fabrication of this sensor is simple, it only includes splicing and
cleaving the PCF with SMF.PCF (LMA-10) with a certain length
spliced to SMF (Corning-28).
The spectrum of PCFI exhibits good sensitivity to humidity
variations. The PCFI response is observed for a range of humidity
values from (27% RH to 85% RH), the positi
The work includes fabrication of undoped and silver-doped nanostructured nickel oxide in form thin films, which use for applications such as gas sensors. Pulsed-laser deposition (PLD) technique was used to fabricate the films on a glass substrate. The structure of films is studied by using techniques of x-ray diffraction, SEM, and EDX. Thermal annealing was performed on these films at 450°C to introduce its effect on the characteristics of these films. The films were doped with a silver element at different doping levels and both electrical and gas sensing characteristics were studied and compared to those of the undoped films. Reasonable enhancements in these characteristics were observed and attributed to the effects of thermal annealing
... Show More|
The mechanism of hydrogen (H2) gas sensor in the range of 50-200 ppm of RF-sputtered annealed zinc oxide (ZnO) and without annealing was studied. The X-ray Diffraction( XRD) results showed that the Zn metal was completely converted to ZnO with a polycrystalline structure. The I–V characteristics of the device (PT/ZnO/Pt) measured at room temperature before and after annealing at 450 oC for4h, from which a linear relationship has been observed. The sensors had a maximum response to H2 at 350 oC for annealing ZnO and showed stable behavior for detecting H2 gases in the range of 50 to 200 ppm. The annealed film exhibited hig |
PVC membrane sensor for the selective determination of Mefenamic acid (MFA) was constructed. The sensor is based on ion association of MFA with Dodecaphospho molybdic acid (PMA) and Dodeca–Tungstophosphoric acid(PTA) as ion pairs. Nitro benzene (NB) and di-butyl phthalate (DBPH) were used as plasticizing agents in PVC matrix membranes. The specification of sensor based on PMA showed a linear response of a concentration range 1.0 × 10–2 –1.0 × 10–5 M, Nernstian slopes of 17.1-18.86 mV/ decade, detection limit of 7 × 10-5 -9.5 × 10 -7M, pH range 3 – 8 , with correlation coefficients lying between 0.9992 and 0.9976, respectively. By using the ionphore based on PTA gives a concentration range of 1.0 × 10–4 –1.0 × 10–5 M,
... Show More