Ultrasonic extraction is an inexpensive, simple and efficient alternative to conventional extraction techniques, as compared with other novel extraction techniques such as microwave-assisted extraction & supercritical fluid extraction techniques, the ultrasound apparatus is cheaper and its operation is easier. Ultrasound assisted extraction has risen rapidly in the latest decade, and for most applications it has proven to be effective compared to traditional extraction techniques. In this paper, a method of ultrasonic-assisted extraction was used to extract Inulin from tubers of Jerusalem artichoke, which have been reported to have several medicinal properties and uses. Inulin is a storage carbohydrate found in many plants especially in chicory root, Jerusalem artichoke and dahlia tuber. In this study, the effect of time, temperature, pH and solid to liquid ratio on Inulin extraction from Jerusalem artichoke tubers by using ultrasonic water bath. The highest yield of Inulin were investigated from Jerusalem artichoke tuber was (99.47%) at temperature of 70°C, pH=7, 60 min and ratio of solid to solvent was (10gm/100ml). Then, The UV detector by colorimetric method with vanillin–sulfuric acid was used for the quantification of Inulin.
This work deals with thermal cracking of heavy vacuum gas oil which produced from the top of vacuum distillation unit at Al- DURA refinery, by continuous process. An experimental laboratory plant scale was constructed in laboratories of chemical engineering department, Al-Nahrain University and Baghdad University. The thermal cracking process was carried out at temperature ranges between 460-560oC and atmospheric pressure with liquid hourly space velocity (LHSV) equal to 15hr-1.The liquid product from thermal cracking unit was distilled by atmospheric distillation device according to ASTM D-86 in order to achieve two fractions, below 220oC as a gasoline fraction and above 220oC as light cycle o
... Show MoreThe research aims to use a new technology for industrial water concentrating that contains poisonous metals and recovery quantities from pure water. Therefore, the technology investigated is the forward osmosis process (FO). It is a new process that use membranes available commercial and this process distinguishes by its low cost compared to other process. Sodium chloride (NaCl) was used as draw solution to extract water from poisonous metals solution. The driving force in the FO process is provided by a different in osmotic pressure (concentration) across the membrane between the draw and poisonous metals solution sides. Experimental work was divided into three parts. The first part includes operating the forward osmosis process using T
... Show MoreRemoving of terasil yellow (W-6GS) dye it was studied by using Iraqi Siliceous Rocks Powder (SRP). The study included adsorption isotherms and some effects: temperature, salty medium and the acidity the study that the adsorption isotherms obeys to Temkin equation more than other equations the results showed that the adsorption increased with increasing temperature (Endothermic process. Based on the results, thermodynamic functions (˜H, ˜G, ˜S) were estimated. The amount of adsorbent on the surface increasing with increasing the acidity solution. The kinetics study of the adsorption treated according (Lagergren equation). The kinetic data of experiments properly correlated with the first order kinetic equation.
The last few years witnessed great and increasing use in the field of medical image analysis. These tools helped the Radiologists and Doctors to consult while making a particular diagnosis. In this study, we used the relationship between statistical measurements, computer vision, and medical images, along with a logistic regression model to extract breast cancer imaging features. These features were used to tell the difference between the shape of a mass (Fibroid vs. Fatty) by looking at the regions of interest (ROI) of the mass. The final fit of the logistic regression model showed that the most important variables that clearly affect breast cancer shape images are Skewness, Kurtosis, Center of mass, and Angle, with an AUCROC of
... Show MoreIntroduction: The study was intended for Roseomonas gilardii NTCC 13290 strain pigment extraction and characterization. Methodology: The pigment-producing bacterial were cultured on Columbia blood agar and nutrient media agar. Then the pigments were extracted by ethanol. The candidate pigment was further characterized by different biotechnological techniques: UV-Vis spectroscopy, FT-IR to analyze the functional group of the targeted pigment, and TLC media. Results: The cultivation of Roseomonas gilardii on media showed pink color and nearly runny texture. The bacterial colonies were microscopically gram stained and examined, the R. gilardii was seen as coccobacillus colonies that mostly form pairs arranged as short chains. The R. gilardii b
... Show MorePeople’s ability to quickly convey their thoughts, or opinions, on various services or items has improved as Web 2.0 has evolved. This is to look at the public perceptions expressed in the reviews. Aspect-based sentiment analysis (ABSA) deemed to receive a set of texts (e.g., product reviews or online reviews) and identify the opinion-target (aspect) within each review. Contemporary aspect-based sentiment analysis systems, like the aspect categorization, rely predominantly on lexicon-based, or manually labelled seeds that is being incorporated into the topic models. And using either handcrafted rules or pre-labelled clues for performing implicit aspect detection. These constraints are restricted to a particular domain or language which is
... Show MoreIn the image processing’s field and computer vision it’s important to represent the image by its information. Image information comes from the image’s features that extracted from it using feature detection/extraction techniques and features description. Features in computer vision define informative data. For human eye its perfect to extract information from raw image, but computer cannot recognize image information. This is why various feature extraction techniques have been presented and progressed rapidly. This paper presents a general overview of the feature extraction categories for image.
Oil from Brassca campestris (local variety) was extracted with hexane using Soxhlet. The extracted oil was characterized and its antimicrobial activity was determined as well. The content of extracted oil was 40% with 0.5% of volatile oil .Oil was immiscible with polar solvent such as ethanol, acetone and water, while it was easily miscible with chloroform due to its hydrophobicity. The result of organoleptic tests revealed that the oil is clear yellow in color and odorless with acceptable taste. The oil was stable at 4 -25 C? for a month. Refractive index (RI) of oil was 1.4723 with density of 0.914, [both at 4-25 C?]. Boiling point 386 C?. Infra red spectroscopy (IR) indicated the presence of different chemical groups (C=C
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More