Roller-Compacted Concrete (RCC) is a zero-slump concrete, with no forms, no reinforcing steel, no finishing and is wet enough to support compaction by vibratory rollers. Because the effectiveness of curing on properties and durability, the primary scope of this research is to study the effect of various curing methods (air curing, emulsified asphalt(flan coat) curing, 7 days water curing and permanent water curing) and different porcelanite (local material used as an Internal Curing agent) replacement percentages (volumetric replacement) of fine aggregate on some properties of RCC and to explore the possibility of introducing more practical RCC for road pavement with minimum requirement of curing. Cubes specimens were sawed from the slabs of (38*38*10) cm for determination of compressive strength. The results show that using (5) % porcelanite improved the compressive strength of RCC (with air curing) as compared with reference RCC (with permanent curing) by percentage ranging from(-2.9 to 6)%.
Background: Polymethyl methacrylate (PMMA) is the most commonly used material in denture fabrication. The material is far from ideal in fulfilling the mechanical requirement. The purpose of this study was to evaluate the effect of addition of 3% wt of treated (silanized) Titanium oxide Nano filler on some physical and mechanical properties of heat cured acrylic denture base material. Materials and methods: 100 specimens were constructed, 50 specimens were prepared from heat cure PMMA without additives (control) and 50 specimens were prepared from heat cure PMMA with the addition of TiO2 Nano fillers. Each group was divided into 5 sub groups according to the test performed which was mixed by probe ultra-sonication machine. Results: A highly
... Show MoreAO Dr. Ali Jihad, Journal of Physical Education, 2021
Background: Relapse of previously moved teeth, is major clinical problem in orthodontics with respect to the goals of successful treatment. This study investigated the effect of orthodontic relapse on the proliferation of fibroblast and epithelial rests of Malassez cells in periodontal ligament of rat molars. Materials and Methods: Sixteen ten-week- old male Wister rats were randomly divided into four groups composed of four animals each: Group I received no orthodontic force (control). In both Group II and Group III, uniform standardized expansive springs were used for moving the maxillary first molars buccally for periods of one and three weeks respectively. The spring initially generated an average expansive force of 20 g on each side.
... Show MoreWorldwide, enormous amounts of waste cause major environmental issues, including scrap tires and plastic, and large waste, a consequence of the demolition of buildings, including crushed concrete, crushed clay bricks, and crushed thermo-stone. From that point, it’s possible to consider that the recycling processes for these materials and using them in the manufacturing field will reduce the adverse effects on the environment of these wastes and the consumption of natural resources. Sustainable concrete blocks can be considered as one of the products produced by using these materials as partial volume replacement of the coarse, fine aggregate, or cement content, considering their dry density, workability, absorption, co
... Show MoreThe experiment was conducted at the faculty of agriculture University of Ain Shams-Egypt, from January to March 2008, to study the effect of different levels of chromium yeast (cr-yeast) on broiler chickens on some physiological traits. A total of 450, one-day old unsexed chickens (Cobb) strain were used. The birds were randomly allocated to five treatments with 3 replicates each. The treatments were control (T1), without supplementation, T2, T3, T4 and T5 which were supplemented with 0.5, 1, 1.5 and 2 mg cr-yeast/kg diet respectively. Chromium yeast supplementation treatments caused a significant (p < 0.05) increase in plasma glucose levels, while supplemented Cr-yeast at levels of 1 (T3), 1.5 (T4), 2 (T5) mg/kg diet resulted in a signific
... Show MoreThis study involves the design of 24 mixtures of fiber reinforced magnetic reactive powder concrete containing nano silica. Tap water was used for 12 of these mixtures, while magnetic water was used for the others. The nano silica (NS) with ratios (1, 1.5, 2, 2.5 and 3) % by weight of cement, were used for all the mixtures. The results have shown that the mixture containing 2.5% NS gives the highest compressive strength at age 7 days. Many different other tests were carried out, the results have shown that the carbon fiber reinforced magnetic reactive powder concrete containing 2.5% NS (CFRMRPCCNS) had higher compressive strength, modulus of rupture, splitting tension, str
... Show MoreThe best means and ways to develop an athlete's physical and skill capabilities, and among these means is the use of training aids that help develop some bio-kinetic abilities, and prepared exercises have had an important role in improving athletic performance in badminton, where the player must possess physical fitness, explosive power, and strength. Characterized by speed as well as accuracy, awareness, and focus while playing on the court, the badminton player must be physically fit through a continuous movement of small and large muscles to achieve good performance, which requires special physical abilities and skills, and the most important of these bio-kinetic abilities are agility, coordination, and measuring the coordination
... Show MoreCdO:NiO/Si solar cell film was fabricated via deposition of CdO:NiO in different concentrations 1%, 3%, and 5% for NiO thin films in R.T and 723K, on n-type silicon substrate with approximately 200 nm thickness using pulse laser deposition. CdO:NiO/n-Si solar cell photovoltaic properties were examined under 60 mW/cm2 intensity illumination. The highest efficiency of the solar cell is 2.4% when the NiO concentration is 0.05 at 723K.
Background: The repair of bone defects remains a major clinical orthopaedic challenge. Bone is a highly vascularised tissue reliant on the close spatial and temporal connection between blood vessels and bone cells to maintain skeletal integrity. Angiogenesis thus plays a pivotal role in skeletal development and bone fracture repair. The role of angiogenic and osteogenic factors in the adaptive response and interaction of osteoblasts and endothelial cells during the multi step process of bone development and repair will be highlighted in this study. This study aimed to identify the role of local exogenous vascular endothelial growth factor in bone healing and to analyze the expression of VEGF by immunohistochemistry in created bone defect af
... Show More