Preferred Language
Articles
/
joe-2566
Comparison between Linear and Non-linear ANN Models for Predicting Water Quality Parameters at Tigris River
...Show More Authors

In this research, Artificial Neural Networks (ANNs) technique was applied in an attempt to predict the water levels and some of the water quality parameters at Tigris River in Wasit Government for five different sites. These predictions are useful in the planning, management, evaluation of the water resources in the area. Spatial data along a river system or area at different locations in a catchment area usually have missing measurements, hence an accurate prediction. model to fill these missing values is essential.
The selected sites for water quality data prediction were Sewera, Numania , Kut u/s, Kut d/s, Garaf observation sites. In these five sites models were built for prediction of the water level and water quality parameters. the following (Biological Oxygen Demand( ), Phosphate,( ) Sulfate(), Nitrate( ), Calcium(Ca), Magnesium(Mg), Total Hardness(TH), Potassium(K), Sodium (Na), Chloride (CL), Total Dissolved Solids (TDS), Electric conductivity (EC), Alkalinity(ALK)). The ANN models tried herein were the Multisite- Multivariate ANN models (5-sites, 14 variables), five models were built, one for each of the five stations as the missing data station. The linear
ANN (traditional) models fail to make the prediction of all variables with high correlation coefficient simultaneously. Hence a non- linear input ANN model was developed herein and believed to be a new modification in ANN modeling. It was found that the ANNs have the ability to predict water level and water quality parameters at all the sites with a good degree of accuracy, the range of correlation coefficients obtained are (12.9%-97.2%) for linear models, while for this model with Non-linear terms, The range of correlation coefficients obtained is (71.8%-99.6%).

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Dec 23 2020
Journal Name
Iraqi Journal For Electrical And Electronic Engineering
Heuristic and Meta-Heuristic Optimization Models for Task Scheduling in Cloud-Fog Systems: A Review
...Show More Authors

Nowadays, cloud computing has attracted the attention of large companies due to its high potential, flexibility, and profitability in providing multi-sources of hardware and software to serve the connected users. Given the scale of modern data centers and the dynamic nature of their resource provisioning, we need effective scheduling techniques to manage these resources while satisfying both the cloud providers and cloud users goals. Task scheduling in cloud computing is considered as NP-hard problem which cannot be easily solved by classical optimization methods. Thus, both heuristic and meta-heuristic techniques have been utilized to provide optimal or near-optimal solutions within an acceptable time frame for such problems. In th

... Show More
View Publication
Crossref (12)
Crossref
Publication Date
Tue Dec 30 2014
Journal Name
College Of Islamic Sciences
Excuse for ignorance in Islamic law         Financial transactions: (Contemporary Applied Models)
...Show More Authors

The researcher highlighted in his research on an important subject that people need, which is the excuse of ignorance in Islamic law. , As the flag of light and ignorance of darkness. Then the researcher lameness of the reasons for research in this subject as it is one of the assets that should be practiced by the ruler and the judge and the mufti and the diligent and jurisprudent, but the public should identify the issues that ignore ignorance and issues that are not excused even if claimed ignorance.
 Then the researcher concluded the most important results, and recommendations that he wanted to set scientific rules for students of science and Muslims in general, to follow the issues of legitimacy and learn its provisions and i

... Show More
View Publication Preview PDF
Publication Date
Mon Nov 09 2020
Journal Name
Construction Research Congress 2020
Alternative Risk Models for Optimal Investment in Portfolio-Based Community Solar
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Thu Jan 01 2015
Journal Name
Mj Journal On Applied Mathematics
Mathematical models for estimation the concentration of heavy metals in soil
...Show More Authors

Publication Date
Thu Dec 01 2022
Journal Name
Al-khwarizmi Engineering Journal
Comparative Transfer Learning Models for End-to-End Self-Driving Car
...Show More Authors

Self-driving automobiles are prominent in science and technology, which affect social and economic development. Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural Network (DNN) for predicting the steerin

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Sat Jan 19 2019
Journal Name
Iraqi Journal Of Agricultural Sciences
USING PROBABILITY REGRESSION MODELS TO MEASURING MANAGEMENT EFFICIENCY FOR BROILER PROJECTS
...Show More Authors

The efficiency of management is determining factor for the success or failure of agricultural projects generally and Livestock particularly achieving its objectives. Therefore, this research came to diagnose the most important variables that determine the efficiency of management using the probability regression models to measure the probability of management efficient of broilers production projects using  random sample included (60) broilers projects represented 11.6% of Baghdad province (research community) in 2016. After estimating the relationship between the management efficiency (descriptive dependent variable) and the independent variables affecting it (age, educational level, production index (PI), experience). The results

... Show More
View Publication
Crossref
Publication Date
Sun May 01 2022
Journal Name
Journal Of Engineering
Performance Analysis of different Machine Learning Models for Intrusion Detection Systems
...Show More Authors

In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Thu Sep 01 2022
Journal Name
Journal Of Engineering
Methods for Removing Dyes from Polluted Water; A Review
...Show More Authors

Most of the water pollutants with dyes are leftovers from industries, including textiles, wool and others. There are many ways to remove dyes such as sorption, oxidation, coagulation, filtration, and biodegradation, Chlorination, ozonation, chemical precipitation, adsorption, electrochemical processes, membrane approaches, and biological treatment are among the most widely used technologies for removing colors from wastewater. Dyes are divided into two types: natural dyes and synthetic dyes.

View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Wed Sep 01 2010
Journal Name
Journal Of Economics And Administrative Sciences
Using simulation to estimate parameters and reliability function for extreme value distribution
...Show More Authors

   This study includes Estimating scale parameter, location parameter  and reliability function  for Extreme Value (EXV) distribution by two methods, namely: -
- Maximum Likelihood Method (MLE).
- Probability Weighted Moments Method (PWM).

 Used simulations to generate the required samples to estimate the parameters and reliability function of different sizes(n=10,25,50,100) , and give real values for the parameters are and , replicate the simulation experiments (RP=1000)

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Mar 29 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Water Injection for Oil Recovery in Mishrif Formation for Amarah Oil Field
...Show More Authors

The water injection of the most important technologies to increase oil production from petroleum reservoirs. In this research, we developed a model for oil tank using the software RUBIS for reservoir simulation. This model was used to make comparison in the production of oil and the reservoir pressure for two case studies where the water was not injected in the first case study but adding new vertical wells while, later, it was injected in the second case study. It represents the results of this work that if the water is not injected, the reservoir model that has been upgraded can produce only 2.9% of the original oil in the tank. This case study also represents a drop in reservoir pressure, which was not enough to support oil production

... Show More
View Publication Preview PDF
Crossref (5)
Crossref