A novel design and implementation of a cognitive methodology for the on-line auto-tuning robust PID controller in a real heating system is presented in this paper. The aim of the proposed work is to construct a cognitive control methodology that gives optimal control signal to the heating system, which achieve the following objectives: fast and precise search efficiency in finding the on- line optimal PID controller parameters in order to find the optimal output temperature response for the heating system. The cognitive methodology (CM) consists of three engines: breeding engine based Routh-Hurwitz criterion stability, search engine based particle
swarm optimization (PSO) and aggregation knowledge engine based cultural algorithm (CA). Matlab simulation package is used to carry out the proposed methodology that finds and tunes the optimal values of the robust PID parameters on-line. In real-time, the LabVIEW package is guided to design the on-line robust PID controller for the heating system. Numerical simulations and experimental results are compared with each other and showed the effectiveness of the proposed control methodology in terms of fast and smooth dynamic response for the heating system, especially when the control methodology considers the external disturbance attenuation problem.
Focusing on the negative role of default risk on banks, as it is one of the most important risks facing banks, which are difficult to determine accurately, and its reflection on the indicators of profitability of cash flows. The increasing competition between banks led to an increase in the credit facilities granted by banks, and was accompanied by an increase in exposure to the risks of default, which led to an impact on the level of performance of banks in terms of achieving the required return according to the levels of high competition. Therefore, the problem of this study focused on the extent to which the risk indicators of default affect the profitability indicators of the cash flows of the banks research sample in the profit
... Show MoreThis article deals with the approximate algorithm for two dimensional multi-space fractional bioheat equations (M-SFBHE). The application of the collection method will be expanding for presenting a numerical technique for solving M-SFBHE based on “shifted Jacobi-Gauss-Labatto polynomials” (SJ-GL-Ps) in the matrix form. The Caputo formula has been utilized to approximate the fractional derivative and to demonstrate its usefulness and accuracy, the proposed methodology was applied in two examples. The numerical results revealed that the used approach is very effective and gives high accuracy and good convergence.
In the present study, the effect of new cross-section fin geometries on overall thermal/fluid performance had been investigated. The cross-section included the base original geometry of (triangular, square, circular, and elliptical pin fins) by adding exterior extra fins along the sides of the origin fins. The present extra fins include rectangular extra fin of 2 mm (height) and 4 mm (width) and triangular extra fin of 2 mm (base) 4 mm (height). The use of entropy generation minimization method (EGM) allows the combined effect of thermal resistance and pressure drop to be assessed through the simultaneous interaction with the heat sink. A general dimensionless expression for the entropy generation rate is obtained by con
... Show MoreWithin the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show MoreEpilepsy is considered as one of the common neurological disorders.About 50 million persons have affected by epilepsy .Carbamazepine is one of the common drugs used by pregnant women with epilepsy. The aim of the present study is to investigate the effect of carbamazepine on the process of brain development during day 13 of pregnancy.Fifty pregnant albino mice have been used. They were divided into two groups. The control group that had been orally drenched with normal saline. The other group was treated group that had been given 15 mgKg of Carbamazepine orally. The fetuses have been collected after killing of the mice. Boun’s solution was selected as fixative. 5-8 µm thick sections from the fetuses were cut to be stained with hematoxyli
... Show More