Scheduling considered being one of the most fundamental and essential bases of the project management. Several methods are used for project scheduling such as CPM, PERT and GERT. Since too many uncertainties are involved in methods for estimating the duration and cost of activities, these methods lack the capability of modeling practical projects. Although schedules can be developed for construction projects at early stage, there is always a possibility for unexpected material or technical shortages during construction stage. The objective of this research is to build a fuzzy mathematical model including time cost tradeoff and resource constraints analysis to be applied concurrently. The proposed model has been formulated using fuzzy theory combining CPM computations, time-cost trade off analysis and resource constraint. MATLAB software has been adopted to perform ranking process, for each case, that
facilitates obtaining the optimum solution. This research infers that it is possible to perform time-cost trade off analysis with resource restriction simultaneously, which ensures achieving scheduling optimum solution reducing the effort and the time when performing these techniques in succession using traditional methods.
This study was undertaken to introduce a fast, accurate, selective, simple and environment-friendly colorimetric method to determine iron (II) concentration in different lipstick brands imported or manufactured locally in Baghdad, Iraq. The samples were collected from 500-Iraqi dinars stores to establish routine tests using the spectrophotometric method and compared with a new microfluidic paper-based analytical device (µPAD) platform as an alternative to cost-effective conventional instrumentation such as Atomic Absorption Spectroscopy (AAS). This method depends on the reaction between iron (II) with iron(II) selective chelator 1, 10-phenanthroline(phen) in the presence of reducing agent hydroxylamine (HOA) and sodium acetate (NaOAc) b
... Show MoreIndustrial effluents loaded with heavy metals are a cause of hazards to the humans and other forms of life. Conventional approaches, such as electroplating, ion exchange, and membrane processes, are used for removal of copper, cadmium, and lead and are often cost prohibitive with low efficiency at low metal ion concentration. Biosorption can be considered as an option which has been proven as more efficient and economical for removing the mentioned metal ions. Biosorbents used are fungi, yeasts, oil palm shells, coir pith carbon, peanut husks, and olive pulp. Recently, low cost and natural products have also been researched as biosorbent. This paper presents an attempt of the potential use of Iraqi date pits and Al-Khriet (i.e. substances l
... Show MoreThe aim of this study was to determine the effect on using the McCarthy Model (4MAT) for developing creative writing skills and reflective thinking among undergraduate students. The quasi-experimental approach was adopted. And, in order to achieve the study objective, the educational content of Teaching Ethics (Approach 401), for the plan for the primary grades teacher preparation program was dealt with by using a teaching program based on the McCarthy Model (4MAT) was used.
The study which was done had been based on the academic achievement test for creative writing skills, and the reflective thinking test. The validity and reliability of the study tools were also confirmed. The study was applied to a sample consisting of
... Show MoreEstimation of the unknown parameters in 2-D sinusoidal signal model can be considered as important and difficult problem. Due to the difficulty to find estimate of all the parameters of this type of models at the same time, we propose sequential non-liner least squares method and sequential robust M method after their development through the use of sequential approach in the estimate suggested by Prasad et al to estimate unknown frequencies and amplitudes for the 2-D sinusoidal compounds but depending on Downhill Simplex Algorithm in solving non-linear equations for the purpose of obtaining non-linear parameters estimation which represents frequencies and then use of least squares formula to estimate
... Show MoreA new algorithm is proposed to compress speech signals using wavelet transform and linear predictive coding. Signal compression based on the concept of selecting a small number of approximation coefficients after they are compressed by the wavelet decomposition (Haar and db4) at a suitable chosen level and ignored details coefficients, and then approximation coefficients are windowed by a rectangular window and fed to the linear predictor. Levinson Durbin algorithm is used to compute LP coefficients, reflection coefficients and predictor error. The compress files contain LP coefficients and previous sample. These files are very small in size compared to the size of the original signals. Compression ratio is calculated from the size of th
... Show MoreAt present, the ability to promote national economy by adjusting to political, economic, and technological variables is one of the largest challenges faced by organization productivity. This challenge prompts changes in structure and line productivity, given that cash has not been invested. Thus, the management searches for investment opportunities that have achieved the optimum value of the annual increases in total output value of the production line workers in the laboratory. Therefore, the application of dynamic programming model is adopted in this study by addressing the division of investment expenditures to cope with market-dumping policy and to strive non-stop production at work.
Abstract
Characterized by the Ordinary Least Squares (OLS) on Maximum Likelihood for the greatest possible way that the exact moments are known , which means that it can be found, while the other method they are unknown, but approximations to their biases correct to 0(n-1) can be obtained by standard methods. In our research expressions for approximations to the biases of the ML estimators (the regression coefficients and scale parameter) for linear (type 1) Extreme Value Regression Model for Largest Values are presented by using the advanced approach depends on finding the first derivative, second and third.
Generally, statistical methods are used in various fields of science, especially in the research field, in which Statistical analysis is carried out by adopting several techniques, according to the nature of the study and its objectives. One of these techniques is building statistical models, which is done through regression models. This technique is considered one of the most important statistical methods for studying the relationship between a dependent variable, also called (the response variable) and the other variables, called covariate variables. This research describes the estimation of the partial linear regression model, as well as the estimation of the “missing at random” values (MAR). Regarding the
... Show MoreMultilevel models are among the most important models widely used in the application and analysis of data that are characterized by the fact that observations take a hierarchical form, In our research we examined the multilevel logistic regression model (intercept random and slope random model) , here the importance of the research highlights that the usual regression models calculate the total variance of the model and its inability to read variance and variations between levels ,however in the case of multi-level regression models, the calculation of the total variance is inaccurate and therefore these models calculate the variations for each level of the model, Where the research aims to estimate the parameters of this m
... Show More