Leaching scheduling techniques are one of the suggested solutions for water scarcity problems .The aim of the study is to show the possibility of using leaching scheduling, when applying the irrigation scheduling program for a certain irrigation project, which was prepare by Water Resources Engineering –University of Baghdad with some modifications to generalized it and it make applicable to various climatic zone and different soil types.
The objectives of this research is to build a system that concerns the prediction of the leaching scheduling (depth and date of leaching water), illustrating the main problems (soil salinity, save the amount of leaching requirement, and to maintain crops growth).The other objective is to compare between the calculated amount of leaching water with the amount of water that is suggested by designers. The program includes, the calculating of predicted daily soil salinity ,the depth of leaching water that should be applied to remove the salt from the soil when it reaches a harmful level, and the total annual volume of leaching water. The results showed, that the use of predicted leaching scheduling with its applicable constrains require high attention when choosing the cropping pattern for each climate zone. Also, it was found that the leaching program is a useful tool for saving irrigation water if cropping pattern has been
adapted carefully. This means the leaching water depth should be added only when needed, and may not be necessary with each irrigation event.
The study aimed to investigate the effect of different times as follows 0.5, 1.00, 2.00 and 3.00 hrs, type of solvent (acetone, methanol and ethanol) and temperature (~ 25 and 50)ºc on curcumin percentage yield from turmeric rhizomes. The results showed significant differences (p? 0.05) in all variables. The curcumin content which were determined spectrophotometrically ranged between (0.55-2.90) %. The maximum yield was obtained when temperature, time and solvent were 50ºC, 3 hrs and acetone, respectively.
Stereolithography (SLA) has become an essential photocuring 3D printing process for producing parts of complex shapes from photosensitive resin exposed to UV light. The selection of the best printing parameters for good accuracy and surface quality can be further complicated by the geometric complexity of the models. This work introduces multiobjective optimization of SLA printing of 3D dental bridges based on simple CAD objects. The effect of the best combination of a low-cost resin 3D printer’s machine parameter settings, namely normal exposure time, bottom exposure time and bottom layers for less dimensional deviation and surface roughness, was studied. A multiobjective optimization method was utilized, combining the Taguchi me
... Show MoreTwo series of 1,3,4-oxadiazole derivatives at the sixth position of the 2,4-di-
Composite materials are widely used in the engineered assets as aerospace structures, marine and air navigation owing to their high strength/weight ratios. Detection and identification of damage in the composite structures are considered as an important part of monitoring and repairing of structural systems during the service to avoid instantaneous failure. Effective cost and reliability are essential during the process of detecting. The Lamb wave method is an effective and sensitive technique to tiny damage and can be applied for structural health monitoring using low energy sensors; it can provide good information about the condition of the structure during its operation by analyzing the propagation of the wave in the
... Show MoreDye-sensitized solar cells (DSSC) create imitation photosynthesis by using chemical reactions to produce electricity from sunlight. DSSC has been pursued in numerous studies due to its capability to achieve efficiencies of up to 15% with artificial photosensitizer in diffuse light. However, artificial photosensitizers present a limitation because of the complex processing of metal compound. Therefore, various types of sensitizers were developed and synthesized to surpass the artificial sensitizer performances such as natural sensitizers from bio-based materials including plants, due to simple processing techniques and low environmental impact. Thus, this study examines the potential and properties of natural sensitizers from the was
... Show More