Preferred Language
Articles
/
joe-253
Fatigue Behavior of Modified Asphalt Concrete Pavement
...Show More Authors

Fatigue cracking is the most common distress in road pavement. It is mainly due to the increase in the number of load repetition of vehicles, particularly those with high axle loads, and to the environmental conditions. In this study, four-point bending beam fatigue testing has been used for control and modified mixture under various micro strain levels of (250 μƐ, 400 μƐ, and 750 μƐ) and 5HZ. The main objective of the study is to provide a comparative evaluation of pavement resistance to the phenomenon of fatigue cracking between modified asphalt concrete and conventional asphalt concrete mixes (under the influence of three percentage of Silica fumes 1%, 2%, 3% by the weight of asphalt content), and (changing in the percentage of asphalt content) by (0.5% ±) from the optimum. The results show that when Silica fumes content was 1%, the fatigue life increases by 17%, and it increases by 46% when Silica fumes content increases to 2%, and that fatigue life increases to 34 % when Silica fumes content increases to 3% as compared with control mixture at (250 μƐ, 20°C and optimum asphalt content). From the results above, we can conclude the optimum Silica fumes content was 2%. When the asphalt content was 4.4%, the fatigue life has increased with the use of silica fumes by (50%), when asphalt content was 5.4%, the additives had led to increasing the fatigue life by (69%), as compared with the conventional asphalt concrete pavement.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jun 30 2021
Journal Name
Scientific Review Engineering And Environmental Sciences
Mesoscale modeling of fracture in cement and asphalt concrete
...Show More Authors

In this paper, mesoscale modeling is performed to simulate and understand fracture behavior of two concrete composites: cement and asphalt concrete using disk-shaped compact tension (DCT) tests. Mesoscale models are used as alternative to macroscale models to obtain better realistic behavior of composite and heterogeneous materials such as cement and asphalt concrete. In mesoscale models, aggregate and matrix are represented as distinct materials and each material has its characteristic properties. Disk-shaped compact tension test is used to obtain tensile strength and fracture energy of materials. This test can be used as a better alternative to other tests such as three points bending tests because it is more convenient for both field and

... Show More
Scopus (2)
Scopus Crossref
Publication Date
Tue Dec 10 2019
Journal Name
Journal Of Engineering And Applied Sciences
Rutting Resistance Potential of High Modulus Asphalt Concrete Pavements
...Show More Authors

The High Modulus Asphalt Concrete Mixture (HMACM) or (EME) (Enrobes a Module Eleve) developed in France, since, 1980 by Laboratories Central des Ponts et Chaussees (LCPC). Due to the increasing in traffic intensity and axle loading this type of mixing were suitable for pavement subjected to heavy duty. Experiments showed that EME mixtures have an excellent moisture damage resistance permanent deformation, fatigue cracking and reducing costs of maintenance and a significant reduction in thickness of pavement. Because of the high stiffness of EME mixes, the stresses transformed to the bottom laid layer by repeated traffic wheel loads were reduced effectively. This study intend to focus the light into the possibility of producing asphalt mixtu

... Show More
Crossref
Publication Date
Sat Oct 01 2016
Journal Name
Journal Of Engineering
Improvement of Asphalt Concrete Mixtures by Adding Pulverised Fuel Ash as Filler
...Show More Authors

Consuming of by-product or waste materials in highway engineering is significant in the construction of new roads and/or in renovations of the existing ones. Pulverised Fuel ash (PFA), which is a by-product material of burning coal in power stations, is one of these materials that might be incorporated instead of mineral filler in hot asphalt mixtures.

Two types of surface course mixtures have been prepared one with conventional mineral filler i.e. ordinary Portland cement (OPC) while the second was with PFA. Several testings have been conducted to indicate the mechanical properties which were Marshall Stability and Indirect Tensile Strength tests. On the other hand, moisture damage and ageing have been evaluated

... Show More
View Publication Preview PDF
Publication Date
Fri Jun 27 2025
Journal Name
Mechanics Of Time-dependent Materials
Characterization and mechanical performance of stone mastic asphalt mixtures modified with SBS and PE polymers
...Show More Authors

This study investigates the characterization and mechanical performance of Stone Mastic Asphalt (SMA) mixtures modified with two types of polymers: styrene–butadiene–styrene (SBS) and high-molecular-weight polyethylene (PE). Neat asphalt cement PG 64-16 was modified using a higher content of SBS and PE at concentrations of 6%, 7%, and 8% by weight of asphalt through the dry blending method to produce Highly Modified Asphalts (HiMA). The physical and rheological properties of the modified binders were evaluated using penetration, softening point, rotational viscosity, and dynamic shear rheometer (DSR) tests. Also, their phase compatibility and morphological changes were evaluated using the storage stability testing and scanning electron

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Tue Feb 28 2017
Journal Name
Journal Of Engineering
Flexural Behavior of Partially Pretensioned Continuous Concrete Beams
...Show More Authors

This paper describes flexural behavior of two spans continuous rectangular concrete beams reinforced with mild steel and partially prestressing strands, to evaluate using different prestressing level and prestressing area in continuous prestressed beams at serviceability and ultimate stages. Six continuous concrete beams with 4550 mm length reinforced with mild steel reinforcement and partially prestressed with two prestressing levels of (0.7fpy  or 0.55fpy.) of and different amount of 12.7 mm diameter seven wire steel strand were used. Test results showed that the partially prestressed reinforced beams with higher prestressing level exhibited the narrowest crack width, smallest deflection and strain in both steel and concrete at ul

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 14 2018
Journal Name
Journal Of Engineering
Direct Shear Behavior of Fiber Reinforced Concrete Elements
...Show More Authors

Improving the accuracy of load-deformation behavior, failure mode, and ultimate load capacity for reinforced concrete members subjected to in-plane loadings such as corbels, wall to foundation connections and panels need shear strength behavior to be included. Shear design in reinforced concrete structures depends on crack width, crack slippage and roughness of the surface of cracks.

This paper illustrates results of an experimental investigation conducted to investigate the direct shear strength of fiber normal strength concrete (NSC) and reactive powder concrete (RPC). The tests were performed along a pre-selected shear plane in concrete members named push-off specimens. The effectiveness of concrete compressiv

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 02 2023
Journal Name
Journal Of Engineering
Discussion on the Structural Design Index and Design Method of Widening and Splicing Lane of Old Asphalt Pavement
...Show More Authors

The splicing design of the existing road and the new road in the expansion project is an important part of the design work. Based on the analysis of the characteristics and the load effect of pavement structure on splicing, this paper points out that tensile crack or shear failure may occur at the splicing under the repeated action of the traffic load on the new/old pavement. According to the current structure design code of asphalt pavement in China, it is proposed that the horizontal tensile stress at the bottom of the splicing layer and the vertical shear stress at other layers of the splicing line should be controlled by adjusting the position and size of the excavated steps in addition to the conventional design ind

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Civil Engineering Journal
Marshall Performance and Volumetric Properties of Styrene-Butadiene-Styrene Modified Asphalt Mixtures
...Show More Authors

The durability of asphalt pavement is associated with the properties and performance of the binder. This work-study intended to understand the impact of blending Styrene-Butadiene-Styrene (SBS) to conventional asphalt concrete mixtures and calculating the Optimum Asphalt Content (OAC) for conventional mixture also; compare the performance between SBS modified with the conventional mixture. Two different kinds of asphalt penetration grades, A.C. (40-50) and A.C. (60-70), were improved with 2.5 and 3.5% SBS polymer, respectively. Marshall properties were determined in this work. Optimum Asphalt Content (OAC) was 4.93 and 5.1% by weight of mixture for A.C. (40-50) and (60-70), respectively. Marshall properties results show an increasem

... Show More
Scopus (13)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Sat Apr 07 2018
Journal Name
Civil Engineering Journal
Behavior of Precast Prestressed Concrete Segmental Beams
...Show More Authors

The structural behavior of Segmental Precast Post-tensioned Reinforced Concrete (SPPRC) beams largely depends on the behavior of the joints that connect between the segments. In this research, series of static tests were carried out to investigate the behavior of full-scale SPPRC beams with different types of epoxy-glued joint configurations; multi-key joint, single key, and plain key joint. The reference specimen was monolithically casted beam and the other specimens were segmental beams with five segments for each one. The general theme from the experimental results reflects an approximate similarity in the behavior of the four beams with slight differences. Due to the high tensile strength of the used epoxy in comparison to concr

... Show More
Crossref (13)
Clarivate Crossref
Publication Date
Sat Aug 21 2021
Journal Name
Engineering, Technology & Applied Science Research
A Comparison between Static and Repeated Load Test to Predict Asphalt Concrete Rut Depth
...Show More Authors

Rutting has a significant impact on the pavements' performance. Rutting depth is often used as a parameter to assess the quality of pavements. The Asphalt Institute (AI) design method prescribes a maximum allowable rutting depth of 13mm, whereas the AASHTO design method stipulates a critical serviceability index of 2.5 which is equivalent to an average rutting depth of 15mm. In this research, static and repeated compression tests were performed to evaluate the permanent strain based on (1) the relationship between mix properties (asphalt content and type), and (2) testing temperature. The results indicated that the accumulated plastic strain was higher during the repeated load test than that during the static load tests. Notably, temperatur

... Show More
View Publication
Crossref (16)
Crossref