The performance of a solar assisted desiccant cooling system for a meeting-hall located in the College of Engineering/University of Baghdad was evaluated theoretically. The system was composed of four components; a solar air heater, a desiccant dehumidifier, a heat exchanger and an evaporative cooler. A computer simulation was developed by using MATLAB to assess the effect of various design and operating conditions on the performance of the system and its components. The actual weather data on recommended days were used to assess the load variation and the system performance during those days. The radiant time series method (RTS) was used to evaluate the hourly variation of the cooling load. Four operation modes were employed for performance evaluation. A 100 % ventilation mode and 3 recirculation modes, 30 % , 60 % and 100 % recirculation of room air. The concept of variable air volume was employed as a control strategy over the day, by changing the supply airflow rate to match the variation in the cooling load.
The results showed that the reduction in moisture content at regeneration temperatures from 55 o C to 75 o C lead to adequate removal of the high latent load in the meeting-hall. Also, the 30 % recirculation of return air resulted in comfortable indoor conditions satisfying the ventilation requirements for most periods of system operation. In addition, the COP of the system was high compared with the conventional vapor compression system. It varied from 1 to 13, when considering solar energy used to regenerate the
desiccant material as free energy.
The evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed
... Show MoreGeographic Information Systems (GIS) are obtaining a significant role in handling strategic applications in which data are organized as records of multiple layers in a database. Furthermore, GIS provide multi-functions like data collection, analysis, and presentation. Geographic information systems have assured their competence in diverse fields of study via handling various problems for numerous applications. However, handling a large volume of data in the GIS remains an important issue. The biggest obstacle is designing a spatial decision-making framework focused on GIS that manages a broad range of specific data to achieve the right performance. It is very useful to support decision-makers by providing GIS-based decision support syste
... Show MoreThe rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show MoreWildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob
... Show MoreIn this paper, the density of state (DOS) at Fe metal contact to Titanium dioxide semiconductor (TiO2) has been studied and investigated using quantum consideration approaches. The study and calculations of (DOS) depended on the orientation and driving energies. was a function of TiO2 and Fe materials' refractive index and dielectric constant. Attention has focused on the effect of on the characteristic of (DOS), which increased with the increasing of refractive index and dielectric constant of Fe metal and vice versa. The results of (DOS) and its relation with and values of system have been discussed. As for contact system is increased, (DOS) values increased at first, but the relation is disturbed later and transforms into an inve
... Show MoreThe research seeks to examine the ability of fifth preparatory students in solving a mathematical problem in relation to system thinking. To this end, the researcher chose (140) fifth preparatory students from four-different secondary schools in Kirkuk city for the academic year (2016-2017). Two tests were adopted to collect study data: a test of (5) items about skills in solving math problem designed by (Al-raihan, 2006); and a test of system thinking skills designed by the researcher himself consisted of (14) items. It was divided into four skills (analyzing the main system to subsystems, eliminating all inner gaps of system, identifying the inner connection of system, and reorganizing the system). The findings indicated a good ability
... Show MoreMature oil reservoirs surrounded with strong edge and bottom water drive aquifers experience pressure depletion and water coning/cresting. This laboratory research investigated the effects of bottom water drive and gas breakthrough on immiscible CO2-Assisted Gravity Drainage (CO2-AGD), focusing on substantial bottom water drive. The CO2-AGD method vertically separates the injected CO2 to formulate a gas cap and Oil. Visual experimental evaluation of CO2-AGD process performance was performed using a Hele-Shaw model. Water-wet sand was used for the experiments. The gas used for injection was pure CO2, and the “oleic” phase was n-decane with a negative spreading coefficient. The aqueous phase was deionized water. To evaluate the feasibilit
... Show MoreAbstract Objective: Comparison of femtosecond small incision lenticule extraction (FS-SMILE) versus Femtosecond laser Insitu keratomileusis (FS-LASIK) regarding dry eye disease (DED) and corneal sensitivity (CS) after those refractive surgeries. Methods: A comparative prospective study conducted for a period of 2 years; from March 2017 until February, 2019. Enrolled patients were diagnosed with myopia. Fifty patients (100 eyes) were scheduled for bilateral FS-SMILE and the other 50 patients (100 eyes) had been scheduled for bilateral FS-LASIK. Both groups were followed for six months after surgery. The age, gender, and preoperative refraction for both groups were matched. Complete evaluation of dry eye disease had been
... Show MoreIn the course of generating a library of open-chain epothilones, we discovered a new class of small molecule anticancer agents that has no effect on tubulin but instead kills selected cancer cell lines by harnessing reactive oxygen species in an iron-dependent manner.