During the last decade, there has been a concern about the relation between aluminum residuals in treated water and Alzheimer disease, and more interest has been considered on the development of natural coagulants. The present study aimed to investigate the efficiency of alum as a primary coagulant in conjunction with mallow, Arabic gum and okra as coagulant aids for the treatment of water samples containing synthetic turbidity of kaolin. Jar test experiments were carried out for initial raw water turbidities 100, 200 and 500 (NTU). The optimum doses of alum, mallow, Arabic gum and okra were 20, 2, 1 and 1 mg/L for100 NTU turbidity level, 35, 4, 2 and 3 mg/L , for 200NTU turbidity level and 50, 8, 10 and 8 mg/L for 500 NTU turbidity level, respectively. The optimum pH was 7 for alum, and 7.5 for mallow, Arabic gum and okra. The residual turbidity was 3.34 to 6.81 NTU by using alum as a primary coagulant with mallow, Arabic gum and okra, and pH values of the treated water by the natural coagulants were 6.1 to 7.01. The optimum dose of the
natural coagulants in the present study has higher efficiency in removing high turbidity in comparison with low turbidity.
Natural coagulant showed many advantages in coagulation/flocculation process. By using natural coagulants, considerable decreasing in Al2(SO4)3 consumption, and Increasing in the rate of sedimentation can be achieved.
This paper studied kinetics of flotation of emulsified paraffine in water in bubble column with sodium .dodecylsulphate as a collector agent. The effects of oil drops and air bubble diameters on the flotation rate constant were studied. The removal rate for each oil drop size was first order with respect to oil drop concentration. An experimental procedure permitting determination of the first order rate constants for removal due to bubble/drop interaction was developed, decreasing bubble diameter by adding NaCl and increasing oil drop diameter increased the rate constants. A comparison between the experimental and theoretical rate constants showed
... Show MoreThe degradation and mineralization of 4-chlorophenol (4-CP) by advanced oxidation processes (AOPs) was investigated in this work, using both of UV/H2O2 and photo-Fenton UV/H2O2/Fe+3 systems.The reaction was influenced by the input concentration of H2O2, the amount of the iron catalyst, the type of iron salt, the pH and the concentration of 4-CP. A colored solution of benzoquinon can be observed through the first 5 minutes of irradiation time for UV/H2O2 system when low concentration (0.01mol/L) of H2O2 was used. The colored solution of benzoquinon could also be observed through the first 5 minutes for the UV/H2O2/Fe+3 system at high
concentration (100ppm) of 4-CP. The results have shown that adding Fe+3 to the UV/H2O2 system enhanced
Industrial wastewater containing nickel, lead, and copper can be produced by many industries. The reverse osmosis (RO) membrane technologies are very efficient for the treatment of industrial wastewater containing nickel, lead, and copper ions to reduce water consumption and preserving the environment. Synthetic industrial wastewater samples containing Ni(II), Pb(II), and Cu(II) ions at various concentrations (50 to 200 ppm), pressures (1 to 4 bar), temperatures (10 to 40 oC), pH (2 to 5.5), and flow rates (10 to 40 L/hr), were prepared and subjected to treatment by RO system in the laboratory. The results showed that high removal efficiency of the heavy metals could be achieved by RO process (98.5%, 97.5% and 96% for Ni(II),
... Show MoreThe presence of dyes in wastewater has become a major issue all over the world. The discharge of dyes in the environment is concerned for both toxicological and esthetical reasons. In this study, the removal of dyes from aqueous solution by electrocoagulation using aluminum electrodes as cathode and anode were investigated with the electrocoagulation cell of 1litter. The study included: the impact of various operating parameters on the dyes removal efficiency like pH, NaCl concentration, distance between electrodes, voltage, initial dyes concentration and type of electrodes. The dye (congo red) concentrations were (50, 100, 150, and 200 ppm), stirring speed was 120 rpm at room temperature. pH used was maintained constant
... Show MoreThis study focused on treating wastewater to remove phosphorus by adsorption onto naturaland local materials. Burned kaolin, porcelinite, bauxite and limestone were selected to be testedas adsorption materials.The adsorption isotherms were evaluated by batch experiments, studyingthe effects of pH, temperature and initial phosphorus concentration. The results showed that at pH6, temperature 20°C and 300 mg/l initial phosphorus concentration; the sorption capacity was0.61, 9, 10 and 13 mg/g at 10 h contact time, for burned kaolin, porcelanite, limestone and bauxiterespectively. As the pH increased from 2 to 10 the removal efficiency for the materials differs inbehaviour. The removal efficiency increased from 40 to 90 % for limestone, and dec
... Show MoreIn the present work advanced oxidation process, photo-Fenton (UV/H2O2/Fe+2) system, for the treatment of wastewater contaminated with oil was investigated. The reaction was influenced by the input concentration of hydrogen peroxide H2O2, the initial amount of the iron catalyst Fe+2, pH, temperature and the concentration of oil in the wastewater. The removal efficiency for the system UV/ H2O2/Fe+2 at the optimal conditions and dosage (H2O2 = 400mg/L, Fe+2 = 40mg/L, pH=3, temperature =30o C) for 1000mg/L load was found to be 72%.
The removal of Anit-Inflammatory drugs, namely; Acetaminophen (ACTP), from wastewater by bulk liquid membrane (BLM) process using Aliquat 336 (QCl) as a carrier was investigated. The effects of several parameters on the extraction efficiency were studied in this research, such as the initial feed phase concentration (10-50) ppm of ACTP, stripping phase (NaCl) concentration (0.3,0.5,0.7 M), temperature (30-50oC), the volume ratio of feed phase to membrane phase (200-400ml/80ml), agitation speed of the feed phase (75-125 rpm), membrane stirring speed (0, 100, 150 rpm), carrier concentration (1, 5, 9 wt%), the pH of feed (2, 4, 6, 8, 10), and solvent type (CCl4 and n-Heptane). The study shows that high ext
... Show MoreAbstract. The main technique for removing bacteria from water for various applications is chemical disinfection. However, this method has many disadvantages such as producing disinfectant by-products (DBPs), biofilm formation and either rendering the water unpotable (at high residual disinfection) or leaving a potential for lethal diseases such as Cholera (if the residual disinfection is too low). Recently, a process was developed for continuous removal of bacteria from water using the principle of froth flotation through compressed air only without any chemicals (Hassan, 2015). This work examines the extent to which chemical free froth flotation can purify drinking water. The experiments were carried out using two flotation columns
... Show More
