A series of laboratory model tests has been carried out to investigate the using of pomegranate sticks mat as reinforcement to increase the bearing capacity of footing on loose sand. The influence of depth and length of pomegranate sticks layer was examined. In the present research single layer of pomegranate sticks reinforcement was used to strengthen the loose sand stratum beneath the strip footing. The dimensions of the used foundation were 4*20 cm. The reinforcement layer has been embedded at depth 2, 4 and 8 cm under surcharge stresses . Reinforcing layer with length of 8 and 16 cm were used. The final model test results indicated that the inclusion of pomegranate sticks reinforcement is very effective in improvement the loading capacity of loose sand. The optimal
benefit in bearing capacity value was realized as the (D/B) ratio (embedded depth to footing width) equal to 0.5.The bearing capacity of a reinforced soil with single layer of pomegranate sticks at (D/B) ratio of o.5 increased by about 4 times (corresponding to S/B =10%) than that for the unreinforced case and continuous in increasing beyond that with no failure. The improvement in bearing capacity decreased with increasing depth of embedment of reinforcement layer until reach to a specified point in which the bearing capacity of a reinforced soil approximately identical with the case of no reinforcement. Also it was found that increase the length of pomegranate sticks layer has no beneficial effect on the improved the bearing capacity of loose sand.
PDBN Rashid, International Journal of Development in Social Sciences and Humanities, 2023
The aim of this study is to provide an overview of various models to study drug diffusion for a sustained period into and within the human body. Emphasized the mathematical compartment models using fractional derivative (Caputo model) approach to investigate the change in sustained drug concentration in different compartments of the human body system through the oral route or the intravenous route. Law of mass action, first-order kinetics, and Fick's perfusion principle were used to develop mathematical compartment models representing sustained drug diffusion throughout the human body. To adequately predict the sustained drug diffusion into various compartments of the human body, consider fractional derivative (Caputo model) to investiga
... Show MoreAbstract
The aim of the research is to demonstrate the impact of long-term investment on profitability, and in order to achieve this goal, long-term investment was chosen, represented by (the ratio of long-term investments to total investments, the ratio of long-term investment to the total (deposits) as independent variables, and studying its impact on the dependent variable, which is profitability as measured by the rate of return on investments, the rate of return on equity. In order to reach the results, the inductive approach and the analytical descriptive approach were used, and the research found a significant impac
... Show MoreIn this research we have tackled the role of Talent management (as a private variable) within (the Talent attraction, the Talent management performance, Talent development and Talent retention) on strategic performance reinforcement ( accredited variable) within its dimensions ( financial perspective, costumer perspective, internal operations perspective and learning and development perspective). The research conducted on sample of some college teachers from two of Sumer's colleges. The research problem represented by the broad organization's competition as well as universities; which led these colleges to investigate it's skillful human staff to meet it's strategic performance.
To meet the aims of
... Show MoreThis paper presents a study for the influence of magnetohydrodynamic (MHD) on the oscillating flows of fractional Burgers’ fluid. The fractional calculus approach in the constitutive relationship model is introduced and a fractional Burgers’ model is built. The exact solution of the oscillating motions of a fractional Burgers’ fluid due to cosine and sine oscillations of an infinite flat plate are established with the help of integral transforms (Fourier sine and Laplace transforms). The expressions for the velocity field and the resulting shear stress that have been obtained, presented under integral and series form in terms of the generalized Mittag-Leffler function, satisfy all imposed initial and boundary conditions. Finall
... Show MoreBraces in straight bridge systems improve the lateral-torsional buckling resistance of the girders by reducing the unbraced length, while in horizontally curved and skew bridges, the braces are primary structural elements for controlling deformations by engaging adjacent girders to act as a system to resist the potentially large forces and torques caused by the curved or skewed geometry of the bridge. The cross-frames are usually designed as torsional braces, which increase the overall strength and stiffness of the individual girders by creating a girder system that translates and rotates as a unit along the bracing lines. However, when they transmit the truck’s live load forces, they can produce fatigue cracks at their connection
... Show MoreBackground : Carpal tunnel syndrome (CTS) is the most common entrapment neuropathy of upper extremities and Open carpal tunnel release is the most frequent surgical procedure and the gold standard for cases that do not respond to conservative treatment. Aims :This study is used to evaluate the functional outcome of limited palmar mini-incision of carpal tunnel release. This study aims to determine the safety and symptomatic and functional efficacy of median nerve decompression with limited incision in carpal tunnel syndrome surgery. Patients and methods:Carpal tunnel release with a 1.5-2 cm limited palmar incision was performed on 20 patients. Patients were evaluated initially at one month after treatment according to symptom severity
... Show MoreIn this paper, chip and powder copper are used as reinforcing phase in polyester matrix to form composites. Mechanical properties such as flexural strength and impact test of polymer reinforcement copper (powder and chip) were done, the maximum flexural strength for the polymer reinforcement with copper (powder and chip) are (85.13 Mpa) and (50.08 Mpa) respectively was obtained, while the maximum observation energy of the impact test for the polymer reinforcement with copper (powder and chip) are (0.85 J) and (0.4 J) respectively