Experimental programs based test results has been used as a means to find out the response of individual elements of structure. In the present study involves investigated behavior of five reinforced concrete deep beams of dimension (length 1200 x height 300 x width150mm) under two points concentrated load with shear span to depth ratio of (1.52), four of these beams with hallow core and
retrofit with carbon fiber reinforced polymer CFRP (with single or double or sides Strips). Two shapes of hallow are investigated (circle and square section) to evaluated the response of beams in case experimental behavior. Test on simply supported beam was performed in the laboratory & loaddeflection, strain of concrete data and crack pattern of those five reinforced concrete beams was recorded. Parametric studies are also conducted in this study includes the effect of hallow opening (shapes and materials), and CFRP ratio (single, double strips and side horizontal stirrups). Comparisons of test results from experimental data are based on load capacity, deflection, crack pattern and strain of concrete for all beams. From this comparison it was found that hallow effect on strength capacity i.e. decrease by about (13%) and increased in deflection and strain by about (18%, 24%) respectively compared with solid section. Also find that CFRP give more enhancements in loading capacity by about(33 to 66%) and decreased deflection for same applied load by about (26%). Test results that show when sides of beams retrofit with CFRP strip against horizontal shear increased strength by about by (20%). Finally the using double CFRP strips for hallow section gives equivalent or more than strength capacity of solid section.
In this research, damping properties for composite materials were evaluated using logarithmic decrement method to study the effect of reinforcements on the damping ratio of the epoxy matrix. Three stages of composites were prepared in this research. The first stage included preparing binary blends of epoxy (EP) and different weight percentages of polysulfide rubber (PSR) (0%, 2.5%, 5%, 7.5% and 10%). It was found that the weight percentage 5% of polysulfide was the best percentage, which gives the best mechanical properties for the blend matrix. The advantage of this blend matrix is that; it mediates between the brittle properties of epoxy and the flexible properties of a blend matrix with the highest percentage of PSR. The second stage
... Show Moreالانهار اصبحت مشبعة بثاني اوكسيد الكربون بشكل عالي وبذلك فهي تلعب دور مهم في كميات الكربون العالمية. لزيادة فهمنا حول مصادر الكربون المتوفرة في النظم البيئية النهرية، تم اجراء هذه الدراسة حول تأثير الكربون العضوي المذاب والحرارة (العوامل الرئيسية لتغير المناخ) كمحركات رئيسية لوفرة ثاني اوكسيد الكربون في الانهار. تم جمع العينات من خمسة واربعون موقع في ثلاثة اجزاء رئيسية لنهر دجلة داخل مدينة بغداد خلال فص
... Show MoreThe finite element method has been used in this paper to investigate the behavior of precast reinforced concrete dapped-ends beams (DEBs) numerically. A parametric investigation was performed on an experimental specimen tested by a previous researcher to show the effect of numerous parameters on the strength and behavior of RC dapped-end beams. Reinforcement details and steel arrangement, the influence of concrete compressive strength, the effect of inclined load, and the effect of support settlement on the strength of dapped-ends beams are examples of such parameters. The results revealed that the dapped-end reinforcement arrangement greatly affects the behavior of dapped end beam. The failure load decreases by 25% when
... Show MoreProfiles of indignation and indiscretion in pre-Islamic poetry
In this work we present a technique to extract the heart contours from noisy echocardiograph images. Our technique is based on improving the image before applying contours detection to reduce heavy noise and get better image quality. To perform that, we combine many pre-processing techniques (filtering, morphological operations, and contrast adjustment) to avoid unclear edges and enhance low contrast of echocardiograph images, after implementing these techniques we can get legible detection for heart boundaries and valves movement by traditional edge detection methods.
Mechanical degradation hampers the practical usage of polymers for turbulent drag reduction
application. Mechanical degradation refers to the chemical process in which the activation energy of
polymer chain scission is exceeded by mechanical action on the polymer chain, and bond rupture
occurs. When a water-soluble polymer and surfactant are mixed in water solution, the specific structures
(aggregates) are formed, in which polymer film is formed around micelle. In this work, Xanthan gum (XG) –
Sodium lauryl ether sulfate (SELS) complex formation and its effect on percentage viscosity reduction
(%VR) was studied. It was found that SELS surfactant reduced the mechanical degradation of XG much
more efficiently than th
To assess the contribution of Doppler broadening and examine the
Compton profile, the Compton energy absorption cross sections are
measured and calculated using formulas based on a relativistic
impulse approximation. The Compton energy-absorption cross
sections are evaluated for different elements (Fe, Zn, Ag, Au and Hg)
and for a photon energy range (1 - 100 keV). With using these crosssections,
the Compton component of the mass–energy absorption
coefficient was derived, where the electron momentum prior to the
scattering event caused a Doppler broadening of the Compton line.
Also, the momentum resolution function was evaluated in terms of
incident and scattered photon energy and scattering angle. The res
The aim of this paper, study the effect of carbon nanotubes on the electrical properties of polyvinylchloride. Samples of polyvinylchloride carbon nanotubes composite prepared by using hot press technique. The weight percentages of carbon nanotubes are 0,5,10 and 20wt.%. Results showed that the D.C electrical conductivity increases with increasing of the weight percentages of carbon nanotubes. Also, the D.C electrical conductivity changed with increase temperature for different concentrations of carbon nanotubes. The activation energy of D.C electrical conductivity is decreased with increasing of carbon nanotubes concentration.
The main objective of present work is to describe the feasibility of friction stir welding (FSW) for
joining of low carbon steel with dimensions (3 mm X 80 mm X 150 mm). A matrix (3×3) of welding
parameters (welding speed and tool rotational speed) was used to see influence of each parameter on
properties of welded joint .Series of (FSW) experiments were conducted using CNC milling machine
utilizing the wide range of rotational speed and transverse speed of the machine. Effect of welding
parameters on mechanical properties of weld joints were investigated using different mechanical tests
including (tensile and microhardness tests ). Micro structural change during (FSW) process was
studied and different welding zones