Orthogonal Frequency Division Multiplexing (OFDM) is an efficient multi-carrier technique.The core operation in the OFDM systems is the FFT/IFFT unit that requires a large amount of hardware resources and processing delay. The developments in implementation techniques likes Field Programmable Gate Array (FPGA) technologies have made OFDM a feasible option. The goal of this paper is to design and implement an OFDM transmitter based on Altera FPGA using Quartus software. The proposed transmitter is carried out to simplify the Fourier transform calculation by using decoder instead of multipliers. After programming ALTERA DE2 FPGA kit with implemented project, several practical tests have been done starting from monitoring all the results of the implemented blocks (VHDL code) and compare them with corresponding results from simulation system implemented in matlab 2010a. The results of these practical tests show that the suggested approach gives a significant improvement in reducing complexity and processing delays (45 nsec) in comparison with the conventional implementations of OFDM transmitter.
A free convective heat transfer from the inside surface of a uniformly heated vertical circular tube has been experimentally investigated under a constant wall heat flux boundary condition for laminar air flow in the ranges of RaL from 6.9108 to 5109. The effect of the different sections (restrictions) lengths placed at the exit of the heated tube on the surface temperature distribution, the local and average heat transfer coefficients were examined. The experimental apparatus consists of aluminum circular tube with 900 mm length and 30 mm inside diameter (L/D=30). The exit sections (restrictions) were included circular tubes having the same inside diameter as the heated tube but with different lengths of
... Show MoreThe key objective of the study is to understand the best processes that are currently used in managing talent in Australian higher education (AHE) and design a quantitative measurement of talent management processes (TMPs) for the higher education (HE) sector.
The three qualitative multi-method studies that are commonly used in empirical studies, namely, brainstorming, focus group discussions and semi-structured individual interviews were considered. Twenty
The style of Free-form Geometry (FFG) has emerged in contemporary architecture within the last three decades around the world through the progress of digital design tools and the development of constructive materials. FFG is considered as the hard efforts of several contemporary architects to release their products from familiar restrictions to discover new and unfamiliar styles under the perspective of innovation. Many contemporary architects seek to recognize their forms and facilitate dealing with according to specific dimensional rules. The main research problem is the lack of knowledge, in the field of architecture, in previous literature about the formation processes in achievin
Linear motor offers several features in many applications that require linear motion. Nevertheless, the presence of cogging force can deteriorate the thrust of a permanent magnet linear motor. Using several methodologies, a design of synchronous single sided linear iron-core motor was proposed. According to exact formulas with surface-mounted magnets and concentrated winding specification, which are relying on geometrical parameters. Two-dimensional performance analysis of the designed model and its multi-objective optimization were accomplished as a method to reduce the motor cogging force using MAXWELL ANSYS. The optimum model design results showed that the maximum force ripple was approximatrly reduced by 81.24%compared to the origina
... Show MoreIn this paper, variable gain nonlinear PD and PI fuzzy logic controllers are designed and the effect of the variable gain characteristic of these controllers is analyzed to show its contribution in enhancing the performance of the closed loop system over a conventional linear PID controller. Simulation results and time domain performance characteristics show how these fuzzy controllers outperform the conventional PID controller when used to control a nonlinear plant and a plant that has time delay.
Essential approaches involving photons are among the most common uses of parallel optical computation due to their recent invention, ease of production, and low cost. As a result, most researchers have concentrated their efforts on it. The Basic Arithmetic Unit BAU is built using a three-step approach that uses optical gates with three states to configure the circuitry for addition, subtraction, and multiplication. This is a new optical computing method based on the usage of a radix of (2): a binary number with a signed-digit (BSD) system that includes the numbers -1, 0, and 1. Light with horizontal polarization (LHP) (↔), light with no intensity (LNI) (⥀), and light with vertical polarization (LVP) (↨) is represen
... Show MoreIn this paper, variable gain nonlinear PD and PI fuzzy logic controllers are designed and the effect of the variable gain characteristic of these controllers is analyzed to show its contribution in enhancing the performance of the closed loop system over a conventional linear PID controller. Simulation results and time domain performance characteristics show how these fuzzy controllers outperform the conventional PID controller when used to control a nonlinear plant and a plant that has time delay.