An experimental and numerical study has been carried out to investigate the heat transfer by natural convection and radiation in a two dimensional annulus enclosure filled with porous media (glass beads) between two horizontal concentric cylinders. The outer cylinders are of (100, 82 and70mm) outside diameters and the inner cylinder of 27 mm outside diameter with (or without) annular fins attached to it. Under steady state condition; the inner cylinder surface is maintained at a high temperature by applying a uniform heat flux and the outer cylinder surface at a low temperature inside a freezer. The experiments were carried out for an annulus filled with
glass beads at a range of modified Rayleigh number (4.9 ≤ Ra≤ 69), radiation parameter (0<Rd<10), with fin length of (Hf=3, 7 and 11mm), with radius ratios of (Rr=(r1/r2) =0.1405,0.2045, 0.293 and 0.3649 ), number of fins (n=0, 12, 23 and 45). Finite difference method with Boussinesq's approximation is used to solve the continuity, energy and momentum equations.
The numerical solution is capable of calculating the streamline, the temperature field, the velocity field, the local and average Nusselt number. A computer program in Mat lab has been built to carry out the numerical solution. The numerical study was done for a range of modified Rayleigh number (4.9 ≤ Ra ≤ 300). Results show that the average Nusselt number is nearly constant for Ra less than 100 and increased with an increase in modified Rayleigh number.
Nusselt number hardly affected by glass beads size and insignificant affected by Rd for Ra less than 100. Decreasing Rr cause clearly increase in average Nusselt number and increasing fin length or fin number decrease heat transfer.
Many designs have been suggested for unipolar magnetic lenses based on changing the width of the inner bore and fixing the other geometrical parameters of the lens to improve the performance of unipolar magnetic lenses. The investigation of a study of each design included the calculation of its axial magnetic field the magnetization of the lens in addition to the magnetic flux density using the Finite Element Method (FEM) the Magnetic Electron Lenses Operation (MELOP) program version 1 at three different values of current density (6,4,2 A/mm2). As a result, the clearest values and behaviors were obtained at current density (2 A/mm2). it was found that the best magnetizing properties, the high
... Show MoreWe present mid-infrared imaging observations of the debris disk around one of the main sequence star Epsilon Eridani in the Q-band at (20.5 µm) and (17.6 µm). The dust that produces emission in debris disk is spatially resolved in the inner region of the debris disk of Epsilon Eridani at distance approximately between 1.4 - 4 AU.
Ensuring reliable data transmission in Network on Chip (NoC) is one of the most challenging tasks, especially in noisy environments. As crosstalk, interference, and radiation were increased with manufacturers' increasing tendency to reduce the area, increase the frequencies, and reduce the voltages. So many Error Control Codes (ECC) were proposed with different error detection and correction capacities and various degrees of complexity. Code with Crosstalk Avoidance and Error Correction (CCAEC) for network-on-chip interconnects uses simple parity check bits as the main technique to get high error correction capacity. Per this work, this coding scheme corrects up to 12 random errors, representing a high correction capac
... Show More