Preferred Language
Articles
/
joe-2259
Boron Removal by Adsorption onto Different Oxides
...Show More Authors

A research was conducted to determine the feasibility of using adsorption process to remove boron from aqueous solutions using batch technique. Three adsorbent materials; magnesium, aluminum and iron oxide were investigated to find their abilities for boron removal. The effects of operational parameters on boron removal efficiency for each material were determined.
The experimental results revealed that maximum boron removal was achieved at pH 9.5 for magnesium oxide and 8 for aluminum and iron oxide. The percentage of boron adsorbed onto magnesium,aluminum and iron oxide reaches up to 90, 42.5 and 41.5% respectively under appropriate conditions. Boron concentration in effluent water after adsorption via magnesium oxide comply with the allowable
concentration according to WHO and the Iraqi drinking water guidelines, i.e. below 0.5 mg/l. Aluminum and iron oxide yield effluent water with boron concentration more than allowable limits. Accordingly,magnesium oxide is more suitable as adsorbent for boron removal from water; for its high adsorbent capacity and high removal ability for boron compared with aluminum and iron oxide.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Apr 01 2017
Journal Name
Journal Of Engineering
Comparative Study between Nanofiltration and Reverse Osmosis Membranes for the Removal of Heavy Metals from Electroplating Wastewater
...Show More Authors

The present work aimed to study the efficiency of nanofiltration (NF) and reverse osmosis (RO) process for water recovery from electroplating wastewater and study the factors affecting the performance of two membrane processes. Nanofiltration and reverse osmosis membranes are made from polyamide as spiral wound module. The inorganic materials ZnCl2, CuCl2.2H2O, NiCl2.6H2O and CrCl3.6H2O were used as feed solutions. The operating parameters studied were: operating time, feed concentrations for heavy metal ions, operating pressure, feed flow rate, feed temperature and feed pH. The experimental results showed, the permeate concentration increased and water flux decreased with increase in time from 0 to 70 min. The permeate concentrations incre

... Show More
Preview PDF
Publication Date
Thu Apr 01 2021
Journal Name
Journal Of Engineering Science And Technology
Applying box-behnken design with statistical optimization for removal vat orange dye from aqueous solution using kaolin
...Show More Authors

Scopus (4)
Scopus
Publication Date
Sat Apr 01 2017
Journal Name
2017 International Conference On Environmental Impacts Of The Oil And Gas Industries: Kurdistan Region Of Iraq As A Case Study (eiogi)
Inverse fluidized bed for chromium ions removal from wastewater and produced water using peanut shells as adsorbent
...Show More Authors

View Publication
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Fri Dec 01 2017
Journal Name
International Journal Of Science And Research
Theoretical and Experimental Study of Nanofiltration and Reverse Osmosis Membranes for Removal of Heavy Metals from Wastewater
...Show More Authors

The present work aimed to study the efficiency of nanofiltration (NF) and reverse osmosis (RO) membrane for heavy metal removal from wastewater and study the factors affecting the performance of these two membranes: feed concentrations for heavy metal ions, pressure, and flow rate. The experimental results showed, heavy metals concentration in permeate increase with raise in feed concentrations, decline with increase in flow rate. The raise of pressure, heavy metals concentration decreases for RO membrane, but for NF membrane the concentration decrease and then at high pressure increase. The rejection percentage for chromium in NF and RO is 99.7% and 99.9%, for copper is 98.4% and 99.3%, for zinc is 97.9% and 99.5%, for nickel is 97.2% and

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Desalination And Water Treatment
Preparation and application of polyethersulfone ultrafiltration membrane incorporating NaX zeolite for lead ions removal from aqueous solutions
...Show More Authors

View Publication
Scopus (35)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Thu Jun 29 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Emulsion Liquid Membrane for Pesticides Removal from Aqueous Solution: Emulsion Stability, Extraction Efficiency and Mass Transfer Studies
...Show More Authors

The current study investigated the stability and the extraction efficiency of emulsion liquid membrane (ELM) for Abamectin pesticide removal from aqueous solution. The stability was investigated in terms of droplet emulsion size distribution and emulsion breakage percent. The proposed ELM included a mixture of corn oil and kerosene (1:1) as a diluent, Span 80 (sorbitan monooleate) as a surfactant and hydrochloric acid (HCl) as a stripping agent without utilizing a carrier agent. Parameters such as homogenizer speed, surfactant concentration, emulsification time and internal to organic volume ratio (I/O) were evaluated. Results show that the lower droplet size of 0.9 µm and higher stable emulsion in terms of breakage percent of 1.12 % were

... Show More
Crossref (5)
Crossref
Publication Date
Tue Jun 30 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Reuse of Brick Waste as a Cheap-Sorbent for the Removal of Nickel Ions from Aqueous Solutions
...Show More Authors

   The potential application of granules of brick waste (GBW) as a low-cost sorbent for removal of Ni+2ions from aqueous solutions has been studied. The properties of GBW were determined through several tests such as X-Ray diffraction (XRD), Energy dispersive X-ray (EDX), Scanning electron microscopy (SEM), and BET surface area. In batch tests, the influence of several operating parameters including contact time, initial concentration, agitation speed, and the dose of GBW was investigated. The best values of these parameters that provided maximum removal efficiency of nickel (39.4%) were 1.5 hr, 50 mg/L, 250 rpm, and 1.8 g/100mL, respectively. The adsorption data obtained by batch experiments subjected to the Three i

... Show More
View Publication Preview PDF
Crossref (11)
Crossref
Publication Date
Mon Aug 19 2024
Journal Name
Scientific Reports
An in-vitro evaluation of residual dentin retained after using novel enzymatic-based chemomechanical caries removal agents
...Show More Authors

To assess the biochemical, mechanical and structural characteristics of retained dentin after applying three novel bromelain‑contained chemomechanical caries removal (CMCR) formulations in comparison to the conventional excavation methods (hand and rotary) and a commercial papain‑contained gel (Brix 3000). Seventy‑two extracted permanent molars with natural occlusal carious lesions (score > 4 following the International Caries Detection and Assessment System (ICDAS‑II)) were randomly allocated into six groups (n = 12) according to the excavation methods: hand excavation, rotary excavation, Brix 3000, bromelain‑contained gel (F1), bromelain‑chloramine‑T (F2), and bromelain chlorhexidine gel (F3). The superficial and deepe

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Oct 24 2023
Journal Name
Environmental Engineering Research
Exploring electromembrane extraction and liquid membrane for efficient removal of heavy metals from aqueous solutions: An overview
...Show More Authors

Environmental pollution is experiencing an alarming surge within the global ecosystem, warranting urgent attention. Among the significant challenges that demand immediate resolution, effective treatment of industrial pollutants stands out prominently, which for decades has been the focus of most researchers for sustainable industrial development aiming to remove those pollutants and recover some of them. The liquid membrane (LM) method, specifically electromembrane extraction (EME), offers promise. EME deploys an electric field, reducing extraction time and energy use while staying eco-friendly. However, there's a crucial knowledge gap. Despite strides in understanding and applying EME, optimizing it for diverse industrial pollutant

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Al-khwarizmi Engineering Journal
An Experimental Study on Electrochemical Grinding Parameters on Hardness and Material Removal Rate for Stainless Steel 316
...Show More Authors

Electrochemical Grinding (ECG) process is a mechanically assisted electrochemical process for material processing. The process is able to successfully machine electrically conducting harder materials at faster rate with improved surface finish and dimensional control. This research studies the effect of applied current, electrolyte concentration, spindle speed and the gap between workpiece and tool on hardness and material removal rate during electrochemical grinding for stainless steel 316. The characteristic features of the electrochemical grinding process are explored through Taguchi-design-based experimental studies. The better hardness can be obtained at 10 A of the current, 150 g/l of the electrolyte concentration, 0.3 mm of gap an

... Show More
View Publication Preview PDF