A research was conducted to determine the feasibility of using adsorption process to remove boron from aqueous solutions using batch technique. Three adsorbent materials; magnesium, aluminum and iron oxide were investigated to find their abilities for boron removal. The effects of operational parameters on boron removal efficiency for each material were determined.
The experimental results revealed that maximum boron removal was achieved at pH 9.5 for magnesium oxide and 8 for aluminum and iron oxide. The percentage of boron adsorbed onto magnesium,aluminum and iron oxide reaches up to 90, 42.5 and 41.5% respectively under appropriate conditions. Boron concentration in effluent water after adsorption via magnesium oxide comply with the allowable
concentration according to WHO and the Iraqi drinking water guidelines, i.e. below 0.5 mg/l. Aluminum and iron oxide yield effluent water with boron concentration more than allowable limits. Accordingly,magnesium oxide is more suitable as adsorbent for boron removal from water; for its high adsorbent capacity and high removal ability for boron compared with aluminum and iron oxide.
The study aims to evaluate the removal of sulfur content from Iraqi light naphtha produced in Al-Dora refinery by adsorption desulfurization DS technique using modified activated carbon MAC loaded with nickel Ni and copper Cu as single binary metals. The experiments were carried in a batch unit with various operating parameters; MAC dosage, agitation speed, and a contact time of 300 min at constant initial sulfur concentration 155 ppm and temperature. The results showed higher DS% by AC/Ni-Cu (66.45)% at 500 rpm and 1 g dosage than DS (29.03)% by activated carbon AC, increasing MAC dosage, agitation speed, and contact time led to increasing DS% values. The adsorption capacity of MAC results was recorded (16, 15, and 20) mg sulfu
... Show MoreThe study aims to evaluate the removal of sulfur content from Iraqi light naphtha produced in Al-Dora refinery by adsorption desulfurization DS technique using modified activated carbon MAC loaded with nickel Ni and copper Cu as single binary metals. The experiments were carried in a batch unit with various operating parameters; MAC dosage, agitation speed, and a contact time of 300 min at constant initial sulfur concentration 155 ppm and temperature. The results showed higher DS% by AC/Ni-Cu (66.45)% at 500 rpm and 1 g dosage than DS (29.03)% by activated carbon AC, increasing MAC dosage, agitation speed, and contact time led to increasing DS% values. The adsorption capacity of MAC results was recorded (16,
... Show MoreDue to the broad range uses of chromium for industrial purposes, besides its carcinogenic effect, an efficient, cost effective removal method should be obtained. In this study, cow bones as a cheap raw material were utilized to produce active carbon (CBAC) by physiochemical activation, which was characterized using: SEM to investigate surface morphology and BET to estimate the specific surface area. The best surface area of CBAC was 595.9 m2/gm which was prepared at 600 ᵒC activation temperature and impregnation ratio of 1:1.5. CBAC was used in aqueous chromium ions adsorption. The investigated factors and their ranges are: initial concentration (10-50 mg/L), adsorption time (30-300 min), temperature (20-50
... Show MoreBackground: This study was done to assist X-ray diffraction and biocompatability of glass ionomer cement reinforced by different ratios of Hydroxyapatite. Materials and Methods: The powder of glass ionomer cement reinforced by different ratios of Hydroxyapatite were used to get X-ray diffraction pattern by X-ray diffraction machine, While for biocompatibility test, A polyethylene tubes containing glass ionomer cement reinforced by different ratios of Hydroxyapatite were implanted on the dorsal submucosal site of Rabbit's tissues and histological slide were prepared for histopathological study. Results: X-ray diffraction test showed that all elements of glass ionomer cement reinforced by different ratios of Hydroxyapatite were react with eac
... Show MoreBack ground: Glass ionomer materials lack resistance to wear and pressure and are susceptible to moisture during the initial stages of setting and dehydration. So this study was done to assess diametral tensile strength and microhardness of glass ionomer reinforced by different amounts of hydroxyapatite. Materials and methods: In this study a hydroxyapatite material was added to glass monomer cement at different ratios: 10%, 15%, 20%, 25% and 30% (by weight). The diametral tensile strength test described by the British standard specification for zinc polycarboxylate cement was used in this study and the microhardness test was performed using Vickers microhardness testing machine and the microhardness values were calculated and statistical c
... Show MoreThis study was aimed to assess the impact of vermicompost, glutathione, and their interaction on beetroot (Beta vulgaris L.) growth, yield, and antioxidant traits. The experiment carried out at vegetable field of the College of Agricultural Engineering Sciences - University of Baghdad during fall season 2019. The experiment was conducted using factorial arrangement within Randomized Complete Block Design with two factors and three replicates (3X3X3). Applying vermicompost before cultivation represented the first factor (0, 15, 30 ton.ha-1), which symbolized (V0, V1, V2). Glutathione (0, 75, 150 mg.L-1) which symbolized (G0, G1, G2) represented the second factor. Results showed the superiority of secondary interaction treatment V2G2
... Show MoreThe current research illustrates experimentally the effect of series and parallel connection (Z-I Configurations) of flat plate water solar collectors array on the thermal performance of closed loop solar heating system. The study includes the effect of changing the water flow rate on the thermal efficiency. The results show that, the collector's efficiency in series connection is higher than the parallel connection within flow rate level less than (100) ℓ/hr. Moreover, the collector efficiency in parallel connection of (I-Configurations) is more than the (Z- Configurations) with increasing the water flow rate .The maximum daily efficiency for parallel (I-Configurations) and (Z- Configurations) are (55%) and (51%) at w
... Show MoreFilms of pure Poly (methyl methacrylate) (PMMA) doped by potassium iodide (KI) salt with percentages (1%) at different thickness prepared by casting method at room temperature. In order to study the effect of increasing thickness on optical properties, transmission and absorption spectra have been record for five different thicknesses(80,140,210,250,320)µm. The study has been extended to include the changes in the band gap energies, refractive index, extinction coefficient and absorption coefficient with thickness.
Organohalosilanes conslitute an important subject ١٦؛ the chemistry oforganosilicon compound؛. Being starting materials and intermediates in the synthesis of a large number of various compounds so it is very important to get such materials in its highest purity ,but the separation of rathylchlorosilanes was still a big^oblem, duet^the great similarity in their physical and chemical properties, making its analysing verydifficult, ^or this reason tteir must be a good method o^e^r^iondealing^ththe^compounds, gas- liquid chromatography proved that it was the best, specially when (m- nitrotoluene) was used as a stationary liquid phase, it gave a complete separation and a good statistical results