A research was conducted to determine the feasibility of using adsorption process to remove boron from aqueous solutions using batch technique. Three adsorbent materials; magnesium, aluminum and iron oxide were investigated to find their abilities for boron removal. The effects of operational parameters on boron removal efficiency for each material were determined.
The experimental results revealed that maximum boron removal was achieved at pH 9.5 for magnesium oxide and 8 for aluminum and iron oxide. The percentage of boron adsorbed onto magnesium,aluminum and iron oxide reaches up to 90, 42.5 and 41.5% respectively under appropriate conditions. Boron concentration in effluent water after adsorption via magnesium oxide comply with the allowable
concentration according to WHO and the Iraqi drinking water guidelines, i.e. below 0.5 mg/l. Aluminum and iron oxide yield effluent water with boron concentration more than allowable limits. Accordingly,magnesium oxide is more suitable as adsorbent for boron removal from water; for its high adsorbent capacity and high removal ability for boron compared with aluminum and iron oxide.
Objective: Evaluate the effects of different storage periods on flexural strength (FS) and degree of conversion (DC) of Bis-Acryl composite and Urethane dimethacrylate provisional restorative materials. Material and Methods: A total of 60 specimens were prepared from four temporary crown materials commercially available and assigned to four tested groups (n = 15 for each group): Prevision Temp, B&E CROWN, Primma Art, and Charm Temp groups. The specimens were stored in artificial saliva, and the FS was tested after 24 h, 7 d, and 14 d. A standard three-point bending test was conducted using a universal testing machine. Additionally, the DC was determined using a Fourier transform infrared spectroscopy (FTIR) device. The data were analyzed st
... Show MoreBackground: Marginal adaptation is critical for long – term success of crown and bridge restoration. Computer aided design / computer aided manufacture (CAD/ CAM) system is gaining more importance in the fabrication of dental restoration. Objective: The aim of this study is to evaluate the effect of crystallization firing on the vertical marginal gap of IPS. emax CAD crowns which fabricated with two different CAD/CAM systems .Materials and Methods: Twenty IPS e.max CAD crowns were fabricated. We had two major groups (A, B) (10 crowns for each group) according to the CAD/CAM system being used: Group A: fabricated with Imes - Icore CAD/CAM system; Group B: fabricated with In Lab Sirona CAD/CAM system. Each group was subdivided into two s
... Show MoreBackground: The bond strength of endodontic sealers with dentin is a very important property for maintaining the integrity and seal of the root canal filling. The aim of this study was to evaluate and compare the effect of various irrigants (QMix, 17% EDTA and 2.5% NaOCl) on the push-out bond strength of AH plus and Bioceramic sealers. Materials and methods: Forty eight freshly extracted maxillary first molars human teeth with striaght palatal root were used in the study. The collected samples were randomly divided into three groups of equal sample size (n=16), according to the final irrigation regimen as follows: Group (1): QMix 2 in 1, Group (2): 17% ethylenediaminetetraacetic acid, Group (3): 2.5% sodium hypochloride. All samples were
... Show MoreThe melting duration in the photovoltaic/phase-change material (PV/PCM) system is a crucial parameter for thermal energy management such that its improvement can realize better energy management in respect to thermal storage capabilities, thermal conditions, and the lifespan of PV modules. An innovative and efficient technique for improving the melting duration is the inclusion of an exterior metal foam layer in the PV/PCM system. For detailed investigations of utilizing different metal foam configurations in terms of their convective heat transfer coefficients, the present paper proposes a newly developed mathematical model for the PV/PCM–metal foam assembly that can readily be implemented with a wide range of operating condition
... Show MoreAcinetobacter baumannii (A. baumannii ) is considered a critical healthcare problem for patients in intensive care units due to its high ability to be multidrug-resistant to most commercially available antibiotics. The aim of this study is to develop a colorimetric assay to quantitatively detect the target DNA of A. baumannii based on unmodified gold nanoparticles (AuNPs) from different clinical samples (burns, surgical wounds, sputum, blood and urine). A total of thirty-six A. baumannii clinical isolates were collected from five Iraqi hospitals in Erbil and Mosul provinces within the period from September 2020 to January 2021. Bacterial isolation and biochemical identification of isolates
... Show MoreReactive Powder Concrete (RPC) can be incorporate as a one of the most important and progressive concrete technology. It is a special type of ultra-high strength concrete (UHSC) that’s exclude the coarse aggregate from its constitutive materials. In this research an experimental study had been carried out to investigate the effect of using three types of materials (porcelain aggregate) and others sustainable materials (glass waste and granular activated carbon) as a partial replacement of fine aggregate. Four percentages had considered (0, 10, 15 and 20) % to achieve better understanding for the influence of these materials upon the compressive strength of RPC. Four curing ages had included in this study, these are; 7, 28, 60 and
... Show MoreIn this work, effects of using different evaporative cooling pads (ECPs) on the energetic and exergetic efficiency of a direct evaporative air cooler (DEAC) have been theoretically and experimentally investigated. Three types of ECPs were used, i.e., honeycomb cellulose cooler pad (HCCP), shading-cloth cooler pad (SCCP), and aspen wood wool cooler pad (AWWCP). For SCCP and AWWCP, a 3-cm pad thickness was used, while for the HCCP, three different values of pad thickness were used, i.e., 3, 5, and 7 cm. Tests were carried out using air velocities of 8, 14, and 19 m/s, measured at the DEAC outlet. Engineering equation solver (EES) used for performing the required calculations of the various parameters affecting the thermal performance of the D
... Show MoreBackground: The marginal fit is the most characteristic that closely related to the longevity or success of a restoration, which is absolutely affected by the fabrication technique. The objective of present in vitro study was to evaluate the effect of four different CAD/CAM systems on the marginal fit of lithiµm disilicate all ceramic crowns. Materials and Methods: Adentoform tooth of a right mandibular first molar was prepared to receive all ceramic crown restoration with deep chamfer finishing line (1mm) and axial reduction convergence angle of 6 degree, dentoform model duplicated to have Nickel-Chromiµm master die. Thirty two stone dies produce from master die and distributed randomly in to four groups (8 dies for each group) accor
... Show More