Modeling the microclimate of a greenhouse located in Baghdad under its weather conditions to calculate the heating and cooling loads by computer simulation. Solar collectors with a V-corrugated absorber plate and an auxiliary heat source were used as a heating system. A rotary silica gel desiccant dehumidifier, a sensible heat exchanger, and an evaporative cooler were added to the collectors to form an open-cycle solar assisted desiccant cooling system. A dynamic model was adopted to predict the inside air and the soil surface temperatures of the greenhouse. These temperatures are used to predict the greenhouse heating and cooling loads through an energy balance method which takes into account the soil heat gain. This is not included in conventional methods. The results showed satisfactory agreement with published papers. Also, the results of heating and cooling loads obtained revealed good agreement with those obtained from conventional methods when the soil heat gain is included. Two identical collectors in series of total area of 5.4m2 were employed as a heating system which provides an outlet air temperature of 30 o C at air mass flux of 0.06 kg/s.m2 at midday in January. While, a 65 oC outlet air temperature was achieved for the same mass flux at midday in August. The desiccant cooling system
was operated in five operating modes; the ventilation mode and four recirculation modes with 20%, 50%, 70%,and 90% recirculation. The simulation results showed that a regeneration temperature of 60-70 o C is satisfactory for a cool supply air temperature of about 19.5 o C. Also, it was noted that 20-30 % recirculation of return air would result in suitable indoor greenhouse conditions for most periods of system operation. In addition, the coefficient of performance COP of the system was high compared with the conventional vapor compression systems.
The best design of subsurface trickle irrigation systems requires knowledge of water and salt distribution patterns around the emitters that match the root extraction and minimize water losses. The transient distribution of water and salt in a two-dimensional homogeneous Iraqi soil domain under subsurface trickle irrigation with different settings of an emitter is investigated numerically using 2D-HYDRUS software. Three types of Iraqi soil were selected. The effect of altering different values of water application rate and initial soil water content was investigated in the developed model. The coefficient of correlation (R2) and the root-mean-square error (RMSE) was used to validate the predicted numerical res
... Show MoreThis paper deals with a Twin Rotor Aerodynamic System (TRAS). It is a Multi-Input Multi-Output (MIMO) system with high crosscoupling between its two channels. It proposes a hybrid design procedure that combines frequency response and root locus approaches. The proposed controller is designated as PID-Lead Compensator (PIDLC); the PID controller was designed in previous work using frequency response design specifications, while the lead compensator is proposed in this paper and is designed using the root locus method. A general explicit formula for angle computations in any of the four quadrants is also given. The lead compensator is designed by shifting the dominant closed-loop poles slightly to the left in the s-plane. This has the effect
... Show MoreThe aim of our current study was to identify the effect of particulate matter of both types (PM2.5 and PM10) resulting from hookah smoking on the hemopoietic system of workers (smokers) in closed cafes. This study included six stations (cafes) on the Rusafa side of Baghdad city and conducted a blood test that included a complete blood count (CBC). A multifunctional air quality detector measured both types of particulate matter in the morning and evening. The study included 30 men (workers and smokers) and 30 men (non-smokers), whose ages ranged from 20 to 40 years. The study found that smokers had an increase in white blood cells and red blood cells, as well as an increase in the percentage of hemoglobin (HGB), hematocrit (HCT), the mean co
... Show MoreThe research aims to improve operational performance through the application of the Holonic Manufacturing System (HMS) in the rubber products factory in Najaf. The problem was diagnosed with the weakness of the manufacturing system in the factory to meet customers' demands on time within the available resources of machines and workers, which led to time delays of Processing and delivery, increased costs, and reduced flexibility in the factory, A case study methodology used to identify the reality of the manufacturing system and the actual operational performance in the factory. The simulation was used to represent the proposed (HMS) by using (Excel 2010) based on the actual data and calculate the operational performance measures
... Show MoreThe weather of Iraq has longer summer season compared with other countries. The ambient temperature during this season reaches over 50 OC which makes the evaporative cooling system suitable for this climate. In present work, the two-stage evaporative cooling system is studied. The first stage is indirect evaporative cooling (IEC) represented by two heat exchangers with the groundwater flow rate (5 L/min). The second stage is direct evaporative cooling (DEC) which represents three pads with groundwater flow rates of (4.5 L/min). The experimental work was conducted in July, August, September, and October in Baghdad. Results showed that overall evaporative efficiency of the system (two coils with three pads each
... Show MoreMK Al-Janabi, NA Nasir, RK Jaber, AO Oleiwe, Iraqi Postgraduate Medical Journal, 2018 - Cited by 7
One of the bigger problems in drinking water is disinfection by-products (DBPs) that come from chlorinated disinfection. This study’s goal was to evaluate the drinking water in Al-Yarmouk Teaching Hospital, Ibn Sina Hospital and Ibn-Al-Nafis Hospital. Samples were collected between October 2018 and September 2019. Physical and chemical characteristics of the water were studied, including (temperature, hydrogen ion (pH), total dissolved solids (TDS), electrical conductivity (EC), turbidity, free residual chlorine, total organic carbon (TOC), total trihalomethanes (THMs), total halo acetic acid (THAAs)). Data analysis showed the highest value of study temperature, pH, TDS, EC, turbidity, free residual chlorine and TOC which was
... Show MoreIn this study, iron was coupled with copper to form a bimetallic compound through a biosynthetic method, which was then used as a catalyst in the Fenton-like processes for removing direct Blue 15 dye (DB15) from aqueous solution. Characterization techniques were applied on the resultant nanoparticles such as SEM, BET, EDAX, FT-IR, XRD, and zeta potential. Specifically, the rounded and shaped as spherical nanoparticles were found for green synthesized iron/copper nanoparticles (G-Fe/Cu NPs) with the size ranging from 32-59 nm, and the surface area was 4.452 m2/g. The effect of different experimental factors was studied in both batch and continuous experiments. These factors were H2O2 concentration, G-Fe/CuNPs amount, pH, initial DB15
... Show More