The change in project cost, or cost growth, occurs from many factors, some of which are related to soil problem conditions that may occurs during construction and/or during site investigation period. This paper described a new soil improvement method with a minimum cost solution by using polymer fiber materials having a length of (3 cm) in both directions and (2.5 mm) in thickness, distributed in uniform medium dense .
sandy soil at different depths (B, 1.5B and 2B) below the footings. Three square footings has been used (5,7.5 and 10 cm) to carry the above investigation by using lever arm loading system design for such purposes.
These fibers were distributed from depth of (0.1B) below the footing base down to the investigated depth. It was found that the initial vertical settlement of footing was highly affected in the early stage of loading due to complex Soil-Fiber Mixture (SFM) below the footing. The failure load value for proposed model in any case of loading increased compared with the un-reinforced soil by increasing the depth of improving below the footing. The Bearing Capacity Ratio (BCR) for soil-fiber mixture has been increased by ratio of (1.4 to
2.5), (1.7 to 4.9), and (1.8 to 8) for footings (5, 7.5, and 10 cm) respectively. The yield load-settlement for soil-fiber mixture system started at settlement of about 1.1% B while the yield load in un-reinforced soil started at smaller percentage which reflects the benefits of using such fiber materialfor improving soil behavior. Comparison between experimental and predicted (calculated) settlement below the footings showed the difference in ranges were within accepted limits for foundation settlements design
This paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback
... Show MoreSelective recovery of atropine from Datura innoxia seeds was studied. Applying pertraction in a rotating film contactor (RFC) the alkaloid was successfully recovered from native aqueous extracts obtained from the plant seeds. Decane as a liquid membrane and sulfuric acid as a stripping agent were used. Pertraction from native liquid extracts provided also a good atropine refinement, since the most of co-extracted from the plant species remained in the feed or membrane solution. Solid–liquid extraction of atropine from Datura innoxia seeds was coupled with RF-pertraction in order to purify simultaneously the extract obtained from the plant. Applying the integrated process, proposed in this study, a product containing 92.6% atropine was
... Show MoreIn this study, some attenuation parameters of gamma shields were studied. This shields consisting of composite materials of Unsaturated polyester as a base material and Nano iron oxide (Fe2O3) and, micro iron (Fe) as reinforcement materials at different percentages (1, 3,5,7and 9)wt%, and with different thickness (1, 1.5, 2, 2.5, 3, 3.5and 4) cm. The results showed that the use of nanoparticles is better than the microparticales in the field of radiation shielding. It has been shown that the values of attenuation parameters of gamma it bitter in the case of nanoparticles than case of the use of micro material.
the research ptesents a proposed method to compare or determine the linear equivalence of the key-stream from linear or nonlinear key-stream
Corrosion behavior of aluminum alloy 7025 was investigated in hydrochloric acid (pH=1) containing 0.6 mol.dm-3 NaCl in the existence and absence of diverse concentrations of sulphamethoxazole as environmentally friendly corrosion inhibitor over the temperature range (298-313)K. Electrochemical polarization method using potentiostatic technique was employed. The inhibition efficiency has been raised with increased sulphamethoxazole concentration but lessened at temperature increases. The highest efficiency value was 96.5 at 298 K and 2 x10-4 mol.dm-3 concentration of sulphamethoxazole. The sulphamethoxazole adsorption was agreed with Langmuir adsorption isotherm. Some thermodynamic parameter (△Gads) and activation energy (Ea) were determin
... Show MoreThe aim of this paper is to present a method for solving third order ordinary differential equations with two point boundary condition , we propose two-point osculatory interpolation to construct polynomial solution. The original problem is concerned using two-points osculatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, many examples are presented to demonstrate the applicability, accuracy and efficiency of the method by compared with conventional method .
In this paper, the method of estimating the variation of Zenith Path Delay (ZPD) estimation method will be illustrate and evaluate using Real Time Kinematic Differential Global Positioning System (RTK-DGPS). The GPS provides a relative method to remotely sense atmospheric water vapor in any weather condition. The GPS signal delay in the atmosphere can be expressed as ZPD. In order to evaluate the results, four points had been chosen in the university of Baghdad campus to be rover ones, with a fixed Base point. For each rover position a 155 day of coordinates measurements was collected to overcome the results. Many models and mathematic calculations were used to extract the ZPD using the Matlab environment. The result shows that the ZPD valu
... Show MoreIn this paper, an approximate solution of nonlinear two points boundary variational problem is presented. Boubaker polynomials have been utilized to reduce these problems into quadratic programming problem. The convergence of this polynomial has been verified; also different numerical examples were given to show the applicability and validity of this method.
A mixture of algae biomass (Chrysophyta, Cyanophyta, and Chlorophyte) has been investigated for its possible adsorption removal of cationic dyes (methylene blue, MB). Effect of pH (1-8), biosorbent dosage (0.2-2 g/100ml), agitated speed (100-300), particle size (1304-89μm), temperature (20-40˚C), initial dye concentration (20-300 mg/L), and sorption–desorption were investigated to assess the algal-dye sorption mechanism. Different pre-treatments, alkali, protonation, and CaCl2 have been experienced in order to enhance the adsorption capacity as well as the stability of the algal biomass. Equilibrium isotherm data were analyzed using Langmuir, Freundlich, and Temkin models. The maximum dye-sorption capacity was 26.65 mg/g at pH= 5, 25
... Show More