Preferred Language
Articles
/
joe-2250
Retrofitting Reinforced Concrete One–Way Damaged Slabs Exposed to High Temperature
...Show More Authors

Exposure of reinforced concrete buildings to an accidental fire may result in cracking and loss in the bearing capacity of their major components, columns, beams, and slabs. It is a challenge for structural engineers to develop efficient retrofitting techniques that enable RC slabs to restore their structural integrity, after being exposed to intense fires for a long period of time. Experimental
investigation was carried out on twenty one slab specimens made of self compacting concrete, eighteen of them are retrofitted with CFRP sheets after burning and loading till failure while three of them (which represent control specimens) are retrofitted with CFRP sheet after loading till failure without burning. All slabs had been tested in a simply supported span and subjected to two-point loading. The main variables were the effect of different temperature levels (300ºC, 500ºC and 700ºC),different concrete compressive strength (20MPa, 30MPa and 40MPa) and cooling rate (gradually and sudden cooling conditions) on the behavior of retrofitted one way slabs .The structural response of each slab specimen was investigated in terms of load-deflection behavior, ultimate load carrying
capacity and mode of failure. The experimental results, generally, indicate that slabs retrofitted using CFRP sheets restored flexural strength values nearly equal to or lower than those of the reference slabs, the retrofitted slabs exhibited larger deflection than the control slabs at ultimate loads. Retrofitted control slabs after loading regained about 93.95% to 97.92% of their original load capacity
(before retrofitting) while the other slabs regained from 42.% to 84% of the load capacity of the original control specimens. Most of the tested slabs failed by concrete crushing at mid span and partial debonding of certain retrofitting systems was also observed for a few cases

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Feb 27 2021
Journal Name
Journal Of Engineering
Assessing the Marshall Properties of Porous Asphalt Concrete
...Show More Authors

Porous asphalt paving is a modern design method that differs from the usual asphalt pavements' traditional designs. The difference is that the design structure of porous pavements allows the free passage of fluids through their layers, which controls or reduces the amount of runoff or water accumulated in the area by allowing the flow of rain and surface runoff.  The cross-structure of this type of paving works as a suitable method for managing rainwater and representing groundwater recharge. The overall benefits of porous asphalt pavements include environmental services and safety features, including controlling the build-up of contaminated metals on the road surface, rainwater management, resistance to slipping ac

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Jan 01 2025
Journal Name
Transportation Engineering
Improving asphalt concrete durability through soda lignin powder
...Show More Authors

Lignin has emerged as a promising asphalt binder modifier due to its sustainable and renewable nature, with the potential to improve flexible pavement performance. This study investigates the use of Soda Lignin Powder (SLP), derived from Pinus wood sawdust via alkaline treatment, as an asphalt modifier to enhance mixture durability. SLP was characterized using Fourier Transformation Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and Scanning Electron Microscopy with Energy Dispersive X-ray Analysis (SEM/EDX), revealing significant changes in its chemical structure post-extraction. These analyses showed the presence of phenolic units, including hydroxyphenyl propane, syringyl, and guaiacyl units. The morphology of SLP was identified

... Show More
View Publication
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Thu Dec 03 2020
Journal Name
Civileng
Evaluation of Concrete Material Properties at Early Age
...Show More Authors

This article investigates the development of the following material properties of concrete with time: compressive strength, tensile strength, modulus of elasticity, and fracture energy. These properties were determined at seven different hydration ages (18 h, 30 h, 48 h, 72 h, 7 days, 14 days, 28 days) for four pure cement concrete mixes totaling 336 specimens tested throughout the study. Experimental data obtained were used to assess the relationship of the above properties with the concrete compressive strength and how these relationships are affected with age. Further, this study investigates prediction models available in literature and recommendations are made for models that are found suitable for application to early age conc

... Show More
View Publication
Crossref (19)
Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Water Temperature Effect on Hardness and Flexural Strength of (PMMA/TiO2 NPs) for Dental Applications
...Show More Authors

PMMA (Poly methyl methacrylate) is considered one of the most commonly used materials in denture base fabrication due to its ideal properties. Although, a major problem with this resin is the frequent fractures due to heavy chewing forces which lead to early crack and fracture in clinical use. The addition of nanoparticles as filler performed in this study to enhance its selected mechanical properties. The Nano-additive effect investigated in normal circumstances and under a different temperature during water exposure. First, tests applied on the prepared samples at room temperature and then after exposure to water bath at (20, 40, 60) C° respectively. SEM, PSD, EDX were utilized for samples evaluation in this study. Flexural

... Show More
View Publication Preview PDF
Scopus (14)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Mon Sep 20 2021
Journal Name
Key Engineering Materials
The Effect of Quantum Confinement on Optical Properties of CdSe Quantum Dots at Room Temperature
...Show More Authors

CdSe quantum dots possess a tuning energy gap which can control gap values according to the size of the quantum dots, this is made the material able to absorb the wavelengths within visible light. A simple model is provided for the absorption coefficient, optical properties, and optical constants for CdSe quantum dots from the size 10nm to 1nm with the range of visible region between (300-730) nm at room temperature. It turns out that there is an absorption threshold for each wavelength, CdSe quantum dots begin to absorb the visible spectrum of 1.4 nm at room temperature for a wavelength of 300 nm. It has been noted that; when the wavelength is increased, the absorption threshold also increases. This applies to the optical propertie

... Show More
View Publication
Crossref
Publication Date
Sun Dec 07 2014
Journal Name
Baghdad Science Journal
The effect of temperature and chemical solutions on the Compressive strength of particulate hybrid composites
...Show More Authors

In this work a hybrid composite materials were prepared containing matrix of polymer (polyethylene PE) reinforced by different reinforcing materials (Alumina powder + Carbon black powder CB + Silica powder). The hybrid composite materials prepared are: • H1 = PE + Al2O3 + CB • H2 = PE + CB + SiO2 • H3 = PE + Al2O3 + CB + SiO2 All samples related to electrical tests were prepared by injection molding process. Mechanical tests include compression with different temperatures and different chemical solutions at different immersion times The mechanical experimentations results were in favour of the samples (H3) with an obvious weakness of the samples (H1) and a decrease of these properties with a rise in temperature and the increasing

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue May 01 2012
Journal Name
Iraqi Journal Of Physics
Studying the effect of temperature and treating time on some physical properties of carbon black
...Show More Authors

Samples prepared by using carbon black as a filler material and phenolic resin as a binder. The samples were pressed in a (3) cm diameter cylindrical die to (250)MPa and treated thermally within temperature range of (600-1000)oC for two and three hours. Physical properties tests were performed, like density, porosity, and X-ray tests. Moreover vicker microhardness and electric resistivity tests were done. From the results, it can be concluded that density was increased while porosity was decreased gradually with increasing temperature and treating time. In microhardness test, it found that more temperature and treating time cause more hardness. Finally the resistivity was decreased in steps with temperature and treating time. It can be c

... Show More
View Publication Preview PDF
Publication Date
Tue Jul 14 2015
Journal Name
Ibn Al-haitham J. For Pure & Appl. Sci.
Effect of Annealing Temperature and Thickness on the Structural and Optical Properties of CdSeThin Films
...Show More Authors

CdSe alloy has been prepared successfully from its high purity elements. Thin films of this alloy with different thicknesses (300,700)nm have been grown on glass substrates at room temperature under very low pressure (10-5)Torr with rate of deposition (1.7)nm/sec by thermal evaporation technique, after that these thin films have been heat treated under low pressure (10-2)Torr at (473,673)K for one hour. X-ray patterns showed that both CdSe alloy and thin films are polycrystalline and have the hexagonal structure with preferential orientation in the [100] and [002] direction respectively. The optical measurements indicated that CdSe thin films have allowed direct optical energy band gap, and it increases from (1.77- 1.84) eV and from

... Show More
Publication Date
Mon Feb 18 2019
Journal Name
Iraqi Journal Of Physics
Effect of annealed temperature on some structural, optical and mechanical properties of selenium thin film
...Show More Authors

In this paper a thin films of selenium was prepare on substrates of n-Si by evaporation in a vacuum technique with thickness about 0.5μm. And then an annealing process was done on samples at two temperature (100 and 200) C ° in a vacuum furnace (10-3 torr).
Some structural, optical and mechanical properties of prepared thin films were measured. Results showed that the prepared film was the crystallization, optical transmittance and micro hardness of the prepared thin films increased significantly after annealing.

View Publication Preview PDF
Crossref
Publication Date
Thu Oct 31 2013
Journal Name
Al-khwarizmi Engineering Journal
Influence of the Applied Potential and Temperature on the Electrode position of the Lead Dioxide
...Show More Authors

The excellent specifications of electrodes coated with lead dioxide material make it of great importance in the industry. So it was suggested this study, which includes electrodeposition of lead dioxide on graphite substrate, knowing that the electrodeposition of lead dioxide on graphite studied earlier in different ways.

In this work the deposition process for lead dioxide conducted using electrolytic solution containing lead nitrate concentration 0.72 M with the addition of some other material to the solution, such as copper nitrate, nickel nitrate, sodium fluoride and cetyl trimethyl ammonium bromide, but only in very small concentrations. As for the operating conditions, the effect of change potential and temperature as well

... Show More
View Publication Preview PDF