Exposure of reinforced concrete buildings to an accidental fire may result in cracking and loss in the bearing capacity of their major components, columns, beams, and slabs. It is a challenge for structural engineers to develop efficient retrofitting techniques that enable RC slabs to restore their structural integrity, after being exposed to intense fires for a long period of time. Experimental
investigation was carried out on twenty one slab specimens made of self compacting concrete, eighteen of them are retrofitted with CFRP sheets after burning and loading till failure while three of them (which represent control specimens) are retrofitted with CFRP sheet after loading till failure without burning. All slabs had been tested in a simply supported span and subjected to two-point loading. The main variables were the effect of different temperature levels (300ºC, 500ºC and 700ºC),different concrete compressive strength (20MPa, 30MPa and 40MPa) and cooling rate (gradually and sudden cooling conditions) on the behavior of retrofitted one way slabs .The structural response of each slab specimen was investigated in terms of load-deflection behavior, ultimate load carrying
capacity and mode of failure. The experimental results, generally, indicate that slabs retrofitted using CFRP sheets restored flexural strength values nearly equal to or lower than those of the reference slabs, the retrofitted slabs exhibited larger deflection than the control slabs at ultimate loads. Retrofitted control slabs after loading regained about 93.95% to 97.92% of their original load capacity
(before retrofitting) while the other slabs regained from 42.% to 84% of the load capacity of the original control specimens. Most of the tested slabs failed by concrete crushing at mid span and partial debonding of certain retrofitting systems was also observed for a few cases
Binary mixtures of three, heavy oil-stocks was subjected to density measurements at temperatures of 30, 35 and 40 °C. and precise data was acquired on the volumetric behavior of these systems. The results are reported in terms of equations for excess specific volumes of mixtures. The heavy oil-stocks used were of good varity, namely 40 stock, 60 stock, and 150 stock. The lightest one is 40 stock with °API gravity 33.69 while 60 stock is a middle type and 150 stock is a heavy one, with °API gravity 27.74 and 23.79 respectively. Temperatures in the range of 30-40 °C have a minor effect on excess volume of heavy oil-stock binary mixture thus, insignificant expansion or shrinkage is observed by increasing the temperature this effect beco
... Show MorePseudomonas aeruginosa is an opportunistic pathogen responsible for serious infections. At least three different exopolysaccharides, alginate, polysaccharide synthesis locus (Psl), and pellicle exopolysaccharide (Pel) make up the biofilm matrix in P. aeruginosa . The effect of temperature on the biofilm formation and gene expression was examined by microtiter plate and real-time quantitative polymerase chain reaction (qRT-PCR). To be able to determine the effect of temperature on biofilm formation and gene expression of P. aeruginosa, 303 clinical and environmental samples were collected. Pseudomonas aeruginosa was isolated from 61 (20.1%) and 48 (15.8%) of the clinical and e
... Show MoreThis paper is focused on studying the effect of cutting parameters (spindle speed, feed and depth of cut) on the response (temperature and tool life) during turning process. The inserts used in this study are carbide inserts coated with TiAlN (Titanum, Aluminium and Nitride) for machining a shaft of stainless steel 316L. Finite difference method was used to find the temperature distribution. The experimental results were done using infrared camera while the simulation process was performed using Matlab software package. The results showed that the maximum difference between the experimental and simulation results was equal to 19.3 , so, a good agreement between the experimental and simulation results was achieved. Tool life w
... Show MoreNano gamma alumina was prepared by double hydrolysis process using aluminum nitrate nano hydrate and sodium aluminate as an aluminum source, hydroxyle poly acid and CTAB (cetyltrimethylammonium bromide) as templates. Different crystallization temperatures (120, 140, 160, and 180) 0C and calcinations temperatures (500, 550, 600, and 650) 0C were applied. All the batches were prepared at PH equals to 9. XRD diffraction technique and infrared Fourier transform spectroscopy were used to investigate the phase formation and the optical properties of the nano gamma alumina. N2 adsorption-desorption (BET) was used to measure the surface area and pore volume of the prepared nano alumina, the particle size and the
... Show MoreA polycrystalline CdTe film has been prepared by thermal evaporation technique on glass substrate at substrate temperature 423 K with 1.0 m thicknesses. The film was heated at various annealing temperature under vacuum (Ta =473, 523 and K). Some of physical properties of prepared films such as structural and optical properties were investigated. The patterns of X-ray diffraction analysis showed that the structure of CdTe powder and all films were polycrystalline and consist of a mixture of cubic and hexagonal phases and preferred orientation at (111) direction.
The optical measurements showed that un annealed and annealed CdTe films had direct energy gap (Eg). The Eg increased with increasing Ta. The refractive index and the real p
Because of Cadmium selenide quantum dots (CdSe quantum dots) has a tuning energy gap in the visible light range, therefore; it is provided a simple theoretical model for the absorption coefficient of CdSe quantum dots, where the absorption coefficient determines the extent to which the light of a material can penetrate a specific wavelength before it is absorbed. CdSe quantum dots have an energy gap can be controlled through two effects: the temperature and the dot size of them. It is found that; there is an absorption threshold for each directed wavelength, where CdSe quantum dots begin to absorb the visible spectrum at a size of 1.4 nm at room temperature for a directed wavelength 3
The temperature influence on the fluorescence lifetime, quantum yields and non-radiative rate parameter or coumarin 460 dye dissolved in methanol was investigated in the temperature range (160-300 k). A single photon counting technique was used or measuring the fluorescence decay curves. A noticeable decrease of the fluorescence lifetime with increasing the temperature was observed. The non-radiative activation energy of 10.57 K.J. mole-1 was measured by the help of Arrhenius plot.
The objective of this study is to determine the efficacy of class V Er:YAG laser (2940 nm) cavity preparation and conventional bur cavity preparation regarding Intrapulpal temperature rise during cavity preparation in extracted human premolar teeth. Twenty non carious premolar teeth extracted for orthodontic purposes were used and class V cavity preparation was applied both buccal and lingual sides for each tooth .Samples were equally grouped into two major groups according to cavity depth (1mm and 2mm). Each major group was further subdivided into two subgroupsof ten teeth for each (twenty cavities for each subgroup). TwinlightEr:YAG laser (2940 nm) with 500mJ pulse energy, P.R.R of 10 Hz and 63.69 J/cm2 energy density was used. The ana
... Show More