Preferred Language
Articles
/
joe-2249
Forward-Reverse Osmosis Processes for Oily Wastewater Treatment
...Show More Authors

In this study, the feasibility of Forward–Reverse osmosis processes was investigated for treating the oily wastewater. The first stage was applied forward osmosis process to recover pure water from oily wastewater. Sodium chloride (NaCl) and magnesium chloride (MgCl2) salts were used as draw solutions and the membrane that was used in forward osmosis (FO) process was cellulose triacetate (CTA) membrane. The operating parameters studied were: draw solution concentrations (0.25 – 0.75 M), oil concentration in feed solution (FS) (100-1000 ppm), the temperature of FS and draw solution (DS) (30 - 45 °C), pH of FS (4-10) and the flow rate of both DS and FS (20 - 60 l/h). It was found that the water flux and oil concentration in FS increase by increasing the concentration of draw solutions, the flow rate of FS and the temperature for a limit (40oC), then, the water flux and oil concentration decrease with increasing the temperature because of happening the internal concentration polarization phenomenon. By increasing the oil concentration in FS and the flow rate of the DS, the water flux and oil concentration in FS decreased, while it had a fluctuated behavior with increasing pH
of oily wastewater. It was found also that MgCl2 gives water flux higher than NaCl. So the values of resistance to solute diffusion within the membrane porous support layer were 55.93 h/m and 26.21 h/m for NaCl and MgCl2 respectively. The second stage was applied reverse osmosis process using polyamide (thin film composite (TFC)) membrane for separating the fresh water from a diluted (NaCl) solution using different parameters such as draw solution concentration (0.08–0.16 M), feed flow rate (20–40 l/h).

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Sep 03 2018
Journal Name
Al-khwarizmi Engineering Journal
Recovery of Aluminum from Industrial Waste (Slag) by Melting and Electrorefining Processes
...Show More Authors

Slag of aluminum is a residue which results during the melting process of primary and secondary aluminum production. Salt slag of aluminum is hazardous solid waste according to the European Catalogue for Hazardous Wastes. Hence, recovery of aluminum not only saves the environment, but also has advantages of financial and economic returns. In this research, aluminum was recovered and purified from the industrial wastes generated as waste from both of State Company for Electrical and Electronic Industries (Baghdad/AlWaziriya) and General Company for Mechanical Industries (Babylon/-Al-Escandria). It was found that these wastes contain tiny proportions of other elements such as iron, copper, nickel, titanium, lead, and potassium. Wastes were

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Sep 30 2010
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
USING ALUMINUM REFUSE AS A COAGULANT IN THE COAGULATION AND FLIOCCULATION PROCESSES
...Show More Authors

The present work aims to study the efficiency of using aluminum refuse, which is available locally (after dissolving it in sodium hydroxide), with different coagulants like alum [Al2 (SO4)3.18H2O], Ferric chloride FeCl3 and polyaluminum chloride (PACl) to improve the quality of water. The results showed that using this coagulant in the flocculation process gave high results in the removal of turbidity as well as improving the quality of water by precipitating a great deal of ions causing hardness. From the experimental results of the Jar test, the optimum alum dosages are (25, 50 and 70 ppm), ferric chloride dosages are (15, 40 and 60 ppm) and polyaluminum chloride dosages were (10, 35 and 55 ppm) for initial water turbidity (100, 500 an

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
LEAD Removal from Industrial Wastewater by Electrocoagulation process
...Show More Authors

This investigation was carried out to study the treatment and recycling of wastewater in the Battery industry for an effluent containing lead ion. The reuse of such effluent can only be made possible by appropriate treatment method such as electro coagulation.
The electrochemical process, which uses a cell comprised aluminum electrode as anode and stainless steel electrode as cathode was applied to simulated wastewater containing lead ion in concentration 30 – 120 mg/l, at different operational conditions such as current density 0.4-1.2 mA/cm2, pH 6 -10 , and time 10 - 180 minute.
The results showed that the best operating conditions for complete lead removal (100%) at maximum concentration 120 mg/l was found to be 1.2 mA/cm2 cur

... Show More
View Publication Preview PDF
Publication Date
Wed Aug 03 2022
Journal Name
Egyptian Journal Of Chemistry
A Novel Bio-electrochemical Cell with Rotating Cylinder Cathode for Cadmium Removal from Simulated Wastewater
...Show More Authors

View Publication
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Thu Sep 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
360 degree reverse feedback / comparative analytical study for a sample of managers and heads of departments in the Central Electricity DepartmentAnd the General Directorate of Water and Sewage
...Show More Authors

يسعى البحث إلى الاهتمام بإحدى الوظائف المهمة في إدارة الموارد البشرية وهي تقويم الأداء التي تواجه مجموعة من الانتقادات والآراء السلبية، اذ ظهر في الأّونة الأخيرة أنموذج جديد يمكن إن يتجاوز تلك السلبيات وهو أنموذج التغذية العكسية المتعدد المصادر درجة .وقد حاول الباحثان توظيف هذا المفهوم في اثنتين من المنظمات العامة العراقية هما (دائرة كهرباء الوسط) التابعة لوزارة الكهرباء
و (دائرة الماء والمجاري) ال

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Sep 30 2017
Journal Name
Al-khwarizmi Engineering Journal
Anaerobic Digestion and Codigestion of Chlorella Vulgaris Microalgae Biomass with Wastewater Sludge and Dairy Manure for Biogas Production
...Show More Authors

Abstract

 

Anaerobic digestion process of organic materials is biochemical decomposition process done by two types of digestion bacteria in the absence of oxygen resulting in the biogas production, which is produced as a waste product of digestion. The first type of bacteria is known as acidogenic which converts organic waste to fatty acids. The second type of bacteria is called methane creators or methanogenic which transforms the fatty acids to biogas (CH4 and CO2). The considerable amounts of biodegradable constitutes such as carbohydrates, lipids and proteins present in the microalgae biomass make it a suitable substrate for the anaerobic digestion or even c

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Dec 27 2017
Journal Name
Al-khwarizmi Engineering Journal
Removal of Oil From Wastewater Using Walnut-Shell
...Show More Authors

 

The ability of pulverized walnut-shell to remove oil from aqueous solutions has been studied. It involves two-phase process which consists of using walnut-shell as a filtering bed for the accumulation and adsorption of oil onto its surface. Up to 96% oil removal from synthetic wastewater samples was achieved while tests results showed that 75% of oil can be removed from the actual wastewater discharged from Al- Duara refinery in the south of Baghdad.

 

View Publication Preview PDF
Publication Date
Wed Mar 18 2020
Journal Name
Baghdad Science Journal
Spectrophotometric and Reverse Flow Injection Method Determination of Nitrazepam in Pharmaceuticals Using O-Coumaric Acid as a New Chromogenic Reagent
...Show More Authors

            A spectrophotometric- reverse flow injection analysis (rFIA) method has been proposed for the   determination of Nitrazepam (NIT) in pure and pharmaceutical preparations. The method is based upon the coupling reaction of NIT with a new reagent O-Coumaric acid (OCA) in the presence of sodium periodate in an aqueous solution. The blue color product was measured at 632 nm. The variation (chemical and physical parameters) related with reverse flow system were estimated. The linearity was over the range 15 - 450 µg/mL of NIT with detection limits and limit of quantification of 3.425 and 11.417 µg mL-1 NIT,respectively. The sample throughput of 28 samples

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Jun 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Zinc Removal from Industrial Wastewater by Electro-Coagulation Process
...Show More Authors

Electro coagulation treatment was used for zinc removal from electroplating wastewater of the State Company for Electrical Industries . This wastewater, here consists zinc ions with maximum concentration in solution of 90 ppm .

The parameters that influenced the wastewater treatment are: current density in the range  1-1.4 mA/cm2, pH  in the range 5-10, temperature in the range 25-45°C and time in the range 10-180 minute.

The research is a laboratory experimental type using batch system for electrical process with direct current. The cell comprised of aluminum electrode as anode and stainless steel electrode as cathode. Thirty experiments and one hundred fifty sample lab tests were carried out in this research

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 25 2019
Journal Name
Journal Of Engineering
Removal of Cadmium from Industrial Wastewater using Electrocoagulation Process
...Show More Authors

Cadmium is one of the heavy metal found in the wastewater of many industries. The electrocoagulation offers many advantages for the removal of cadmium over other methods. So the removal of cadmium from wastewater by using electrocoagulation was studied to investigate the effect of operating parameters on the removal efficiency. The studied parameters were the initial pH, initial concentration, and applied voltage. The study experiments were conducted in a batch reactor with  with two pairs of aluminum electrodes with dimension  and 2mm in thick with 1.5 cm space between them. The optimum removal was obtained at pH =7, initial concentration = 50 mg/L, and applied voltage = 20 V and it was 90%.

View Publication Preview PDF
Crossref (10)
Crossref