In this paper the effect of engagement length, number of teeth, amount of applied load, wave propagation time, number of cycles, and initial crack length on the principal stress distribution, velocity of crack propagation, and cyclic crack growth rate in a spline coupling subjected to cyclic torsional impact have been investigated analytically and experimentally. It was found that the stresses induced due to cyclic impact loading are higher than the stresses induced due to impact loading with high percentage depends on the number of cycles and total loading time. Also increasing the engagement length and the number of teeth reduces the principal stresses (40%) and
(25%) respectively for increasing the engagement length from (0.15 to 0.23) and the number of teeth from (8 to 10). while increasing the other parameters (amount of applied load, wave propagation time, number of cycles, and initial crack length) increase the principal stresses at the root of the tooth (37% when the applied load rises from (8 KN to 11KN) and (62% when the wave
propagation time rises from (0.5 to 1).
In this paper, we proposed to zoom Volterra equations system Altfazlah linear complementarity of the first type in this approximation were first forming functions notch Baschtdam matrix and then we discussed the approach and stability, to notch functions
This study uses load factor and loss factor to determine the power losses of the electrical feeders. An approach is presented to calculate the power losses in the distribution system. The feeder’s technical data and daily operation recorded data are used to calculate and analyze power losses.
This paper presents more realistic method for calculating the power losses based on load and loss factors instead of the traditional methods of calculating the power losses that uses the RMS value of the load current which not consider the load varying with respect to the time. Eight 11kV feeders are taken as a case study for our work to calculate load factor, loss factor and power losses. Four of them (F40, F42, F43 and F
... Show MoreAnalysis the economic and financial phenomena and other requires to build the appropriate model, which represents the causal relations between factors. The operation building of the model depends on Imaging conditions and factors surrounding an in mathematical formula and the Researchers target to build that formula appropriately. Classical linear regression models are an important statistical tool, but used in a limited way, where is assumed that the relationship between the variables illustrations and response variables identifiable. To expand the representation of relationships between variables that represent the phenomenon under discussion we used Varying Coefficient Models
... Show MoreThe research aims to identify banking stress tests, which is one of the modern and important tools in managing banking risks by applying the equations of that tool to the sample. The banking sector considered one of the most vulnerable to sudden and rapid changes in an unstable economic environment, making it more vulnerable. Therefore, it is necessary to establish a special risk management section to reduce the banking risks of the banking business that negatively affect its performance.
The research concluded that there is a direct relationship between stress tests and risk management, as stress tests are an essential tool in risk management. They also considered a unified approach in managing bank risks that helps the bank to
... Show MoreThe harvest of hydrocarbon from the depleted reservoir is crucial during field development. Therefore, drilling operations in the depleted reservoir faced several problems like partial and total lost circulation. Continuing production without an active water drive or water injection to support reservoir pressure will decrease the pore and fracture pressure. Moreover, this depletion will affect the distribution of stress and change the mud weight window. This study focused on vertical stress, maximum and minimum horizontal stress redistributions in the depleted reservoirs due to decreases in pore pressure and, consequently, the effect on the mud weight window. 1D and 4D robust geomechanical models are
The mechanical design of elevator elements is always performed by international standards. The engineer selects the appropriate elements of elevator according to catalogues without knowing scientific details. Therefore, a theoretical analysis is achieved at two operating conditions for guide rails (1) safety gear operation, and (2) running condition with the loads unevenly distributed on the elevator car. The guide rail is considered a continuous beam with variable supports. Then the British code is listed showing the equations used in it.
The theoretical equations showed that guide rails are never subjected to stress in simultaneous combined buckling and bending in the plane, where the bending moment is exerted. It is always a c
... Show MoreThe present paper concerns with the problem of estimating the reliability system in the stress – strength model under the consideration non identical and independent of stress and strength and follows Lomax Distribution. Various shrinkage estimation methods were employed in this context depend on Maximum likelihood, Moment Method and shrinkage weight factors based on Monte Carlo Simulation. Comparisons among the suggested estimation methods have been made using the mean absolute percentage error criteria depend on MATLAB program.
Various simple and complicated models have been utilized to simulate the stress-strain behavior of the soil. These models are used in Finite Element Modeling (FEM) for geotechnical engineering applications and analysis of dynamic soil-structure interaction problems. These models either can't adequately describe some features, such as the strain-softening of dense sand, or they require several parameters that are difficult to gather by conventional laboratory testing. Furthermore, soils are not completely linearly elastic and perfectly plastic for the whole range of loads. Soil behavior is quite difficult to comprehend and exhibits a variety of behaviors under various circumstances. As a result, a more realistic constitutive model is
... Show MoreVarious simple and complicated models have been utilized to simulate the stress-strain behavior of the soil. These models are used in Finite Element Modeling (FEM) for geotechnical engineering applications and analysis of dynamic soil-structure interaction problems. These models either can't adequately describe some features, such as the strain-softening of dense sand, or they require several parameters that are difficult to gather by conventional laboratory testing. Furthermore, soils are not completely linearly elastic and perfectly plastic for the whole range of loads. Soil behavior is quite difficult to comprehend and exhibits a variety of behaviors under various circumstances. As a result, a more realistic constitutive model is
... Show MoreThe purpose of this paper is to present an approach to compute accurately the distributions of the frictional heat generated, contact pressure and thermal stresses at any instant during the sliding period (heating phase) of the single-disc friction clutch system works in the dry condition and the complex interaction among them.
Numerical work was achieved using the developed elastic and thermal finite element models (axisymmetric models) to simulate the engagement of the single-disc friction clutch system.