This work predicts the effect of thermal load distribution in polymer melt inside a mold and a die during injection and extrusion processes respectively on the structure properties of final product. Transient thermal and structure models of solidification process for polycarbonate polymer melt in a steel mold and die are studied in this research. Thermal solution obtained according to solidify the melt from 300 to 30Cand Biot number of 16 and 112 respectively for the mold and from 300 to 30 Cand Biot number of 16 for die. Thermal conductivity, and shear and Young Modulus of polycarbonate are temperature depending. Bonded contact between the polycarbonate and the steel surfaces is suggested to transfer the thermal load. The temperatures distribution produces in thermal model importing as load and boundary conditions to solve the structure model. 3D mold and die are built to simulate the thermal and structure behavior using ANSYS 12.1 program. The results show that the temperatures and residual stresses decreases with the distance from the center to surfaces for the mold ,while for the die the temperatures and stresses decreases with the distance from the inlet to the outlet. The temperatures and stresses decreases with the time increasing for both mold and die. Also the thermal strain compatible with the temperatures distribution in the mold and the die. The total deformation concentrated at the left and right edge of polycarbonate in the mold, while starting in the center of the polymer at the outlet and then transfer to the entry of the die with the time increasing.
Rapid, reproducible and accurate method has been developed for the assay for of mebendazol (MBZ) residual assay. The method is based on alkaline hydrolysis of MBZ with sodium hydroxide then oxidation with N-bromosuccinimide (NBS) followed by coupling with 4-Bromoaniline (4-BA) to yield a highly colored product absorbed at maximum 434 nm. Regression analysis of linearity range was found (0.6-2.8) µg.ml-1. The optimum conditions that affect the oxidation were studied. The developed method was found to be precise with mean value of relative standard deviation (1.153- 1.303) and accurate with relative error (-0.5940-1.7821) .The calculated molar absorptivity and sandal sensitivity values of (29825 L.mol-1.cm
... Show MoreRapid, reproducible and accurate method has been developed for the assay for of mebendazol (MBZ) residual assay. The method is based on alkaline hydrolysis of MBZ with sodium hydroxide then oxidation with N-bromosuccinimide (NBS) followed by coupling with 4-Bromoaniline (4-BA) to yield a highly colored product absorbed at maximum 434 nm. Regression analysis of linearity range was found (0.6-2.8) µg.ml-1. The optimum conditions that affect the oxidation were studied. The developed method was found to be precise with mean value of relative standard deviation (1.153- 1.303) and accurate with relative error (-0.5940-1.7821) .The calculated molar absorptivity and sandal sensitivity values of (29825 L.mol-1.cm-1), 0.0099 µg.cm-2 respe
... Show MoreMany researchers tried to prevent or reduce moisture damage and its sensitivity to temperature to improving the performance of hot mix asphalt because it is decreasing the functional and structural life of fixable pavement due to the moisture damage had exposed to it.
The main objective of this study is to inspect the effect of (fly ash “3%, 6%, 12%”, hydrated lime”5%, 10%, 20%” and silica fumes”1%, 2%, 4%) referring to previous research by the net weight asphalt cement as a modified material on the moisture and temperature sensitivity of hot mix asphalt. This was done using asphalt from AL-Nasiria refinery with penetration grade 40-50, nominal maximum size (12.5) mm (surface course) of aggregate and on
... Show MoreRheological instrument is one of the basic analytical measurements for diagnosing the properties of polymers fluids to be used in any industry. In this research polycarbonate was chosen because of its importance in many areas and possesses several distinct properties.
Two kinds of rheometers devices were used at different range of temperatures from 220 ˚C-300 ˚C to characterize the rheological technique of melted polycarbonate (Makrolon 2805) by a combination of different investigating techniques. We compared the results of the linear (oscillatory) method with the non-linear (steady-state) method; the former method provided the storage and the loss modulus of melted polycarbonate, and presented the Cox-Merz model as well. One of the
Soft clays are generally characterized by low shear strength, low permeability and high compressibility. An effective method to accelerate consolidation of such soils is to use vertical drains along with vacuum preloading to encourage radial flow of water. In this research numerical modeling of prefabricated vertical drains with vacuum pressure was done to investigate the effect of using vertical drains together with vacuum pressure on the degree of saturation of fully and saturated-unsaturated soft soils. Laboratory experiments were conducted by using a specially-designed large consolidometer cell where a central drain was installed and vacuum pressure was applied. All tests were conducted
... Show MoreAmong all the common mechanical transmission elements, gears still playing the most dominant role especially in the heavy duty works offering extraordinary performance under extreme conditions and that the cause behind the extensive researches concentrating on the enhancement of its durability to do its job as well as possible. Contact stress distribution within the teeth domain is considered as one of the most effective parameters characterizing gear life, performance, efficiency, and application so that it has been well sought for formal gear profiles and paid a lot of attention for moderate tooth shapes. The aim of this work is to investigate the effect of pressure angle, speed ratio, and correction factor on the maxi
... Show MoreAs a result of the increase in wireless applications, this led to a spectrum problem, which was often a significant restriction. However, a wide bandwidth (more than two-thirds of the available) remains wasted due to inappropriate usage. As a consequence, the quality of the service of the system was impacted. This problem was resolved by using cognitive radio that provides opportunistic sharing or utilization of the spectrum. This paper analyzes the performance of the cognitive radio spectrum sensing algorithm for the energy detector, which implemented by using a MATLAB Mfile version (2018b). The signal to noise ratio SNR vs. Pd probability of detection for OFDM and SNR vs. BER with CP cyclic prefix with energy dete
... Show MoreBaker's Yeast is an important additive among the substances, which improves bred quality, thus, a consideration has been made to study the conditions and parameters that affecting the production of the yeast in a batch fermenter experimentally and theoretically. Experimental runs were implemented in a 12-liter pilot-scale fermenter to predict the rate of growth and other parameters such as amount of additive consumed and the amount of heat generated. The process is modeled and performed using a computer programming prepped for this purpose, the model gave a good agreement comparing to the experimental work specially in the log phase.
In this study, the effect of the thermal conductivity of phase change material (PCM) on the performance of thermal energy storage has been analyzed numerically. A horizontal concentric shell-and-tube latent heat thermal energy storage system (LHTESS) has been performed during the solidification process. Two types of paraffin wax with different melting temperatures and thermal conductivity were used as a PCM on the shell side, case1=0.265W/m.K and case2=0.311 W/m.K. Water has been used as heat transfer fluid (HTF) flow through in tube side. Ansys fluent has been used to analyze the model by taking into account phase change by the enthalpy method used to deal with phase transition. The numerical simulatio
... Show More