This work predicts the effect of thermal load distribution in polymer melt inside a mold and a die during injection and extrusion processes respectively on the structure properties of final product. Transient thermal and structure models of solidification process for polycarbonate polymer melt in a steel mold and die are studied in this research. Thermal solution obtained according to solidify the melt from 300 to 30Cand Biot number of 16 and 112 respectively for the mold and from 300 to 30 Cand Biot number of 16 for die. Thermal conductivity, and shear and Young Modulus of polycarbonate are temperature depending. Bonded contact between the polycarbonate and the steel surfaces is suggested to transfer the thermal load. The temperatures distribution produces in thermal model importing as load and boundary conditions to solve the structure model. 3D mold and die are built to simulate the thermal and structure behavior using ANSYS 12.1 program. The results show that the temperatures and residual stresses decreases with the distance from the center to surfaces for the mold ,while for the die the temperatures and stresses decreases with the distance from the inlet to the outlet. The temperatures and stresses decreases with the time increasing for both mold and die. Also the thermal strain compatible with the temperatures distribution in the mold and the die. The total deformation concentrated at the left and right edge of polycarbonate in the mold, while starting in the center of the polymer at the outlet and then transfer to the entry of the die with the time increasing.
In this study, the effect of intersecting ribs with inclined ribs on the heat transfer and flow characteristics of a high aspect ratio duct has been numerically investigated. The Relative roughness pitch (P/e) is 10 and the Reynolds number range from 35,700 to 72,800. ANSYS (Fluent-Workbench 18.0) software has been utilized to solve the Reynolds averaged Navier-Stokes (RANS) equations with the Standard k-ε turbulence model. Three ribbed models have been used in this study. Model 1 which is a just inclined ribs, Model 2 which has a single longitudinal rib at the center with inclined ribs and Model 3 which has two longitudinal ribs at the sides. The results showed that the heat transfer rate has been enhanced when the int
... Show MoreAn analytical method and a two-dimensional finite element model for treating the problem of laser heating and melting has been applied to aluminum 2519T87and stainless steel 304. The time needed to melt and vaporize and the effects of laser power density on the melt depth for two metals are also obtained. In addition, the depth profile and time evolution of the temperature before melting and after melting are given, in which a discontinuity in the temperature gradient is obviously observed due to the latent heat of fusion and the increment in thermal conductivity in solid phase. The analytical results that induced by laser irradiation is in good agreement with numerical results.
Beta Distribution
Abstract
Gamma and Beta Distributions has very important in practice in various areas of statistical and applications reliability and quality control of production. and There are a number of methods to generate data behave on according to these distribution. and These methods bassic primarily on the shape parameters of each distribution and the relationship between these distributions and their relationship with some other probability distributions. &nb
... Show MoreABSTRACT
This research included the preparation and characterization of new demulsifies from natural and synthetic polymers of chitosan and polyvinyl alcohol that are environmentally friendly and at the same time have high efficacy comparable to emulsifiers. imported foreign. The prepared compounds were examined using infrared spectroscopy and nuclear magnetic resonance spectroscopy, and all the spectral signals of the polymers were in good agreement with the chemical composition of the polymers. And the melting and decomposition that occur on polymers at high temperatures. The effect of the length and type of side chain in the compositions of polymers on the process of water separation of oil emulsions w
... Show MoreTwo dimensional meso-scale concrete modeling was used in finite element analysis of plain concrete beam subjected to bending. The plane stress 4-noded quadrilateral elements were utilized to model coarse aggregate, cement mortar. The effect of aggregate fraction distribution, and pores percent of the total area – resulting from air voids entrapped in concrete during placement on the behavior of plain concrete beam in flexural was detected. Aggregate size fractions were randomly distributed across the profile area of the beam. Extended Finite Element Method (XFEM) was employed to treat the discontinuities problems result from double phases of concrete and cracking that faced during the finite element analysis of concrete beam. Crac
... Show MoreExtreme conditions will cause the water level of high fill canal segment to change suddenly, which will affect the velocity and pore pressure of the slope. A 9 km irrigation earth canal in the city of Alsyahy, 15 km away from Al-Hilla city, and branching off from the left side of Shatt Al-Hilla at 57 km, was studied. The aim of this work is to study and analyze the effect of rationing system on the Birmana earthen canal during rapid drawdown case. Finite element modeling with Geo-Studio software was used in the present study to analyze the combined seepage and slope stability for three cycles. The resulting minimum safety factor obtained from the analysis using the saturated and
The total and individual multipole moments of magnetic electron scattering form factors in 41Ca have been investigated using a widely successful model which is the nuclear shell model configurations keeping in mind of 1f7/2 subshell as an L-S shell and Millinar, Baymann, Zamick as L-S shell (F7MBZ) to give the model space wave vector. Also, harmonic oscillator wave functions have been used as wave function of a single particle in 1f7/2 shell. Nucleus 40Ca as core closed and Core polarization effects have been used as a corrective with first order correction concept to basic computation of L-S shell and the excitement energy has been implemented with 2ћω. The
... Show MoreThis study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperatur
... Show MoreSKF Sami I. Jafar, Mohammad J. Kadhim, Engineering and Technology Journal, 2018 - Cited by 4