Preferred Language
Articles
/
joe-2239
A Multi-variables Multi -sites Model for Forecasting Hydrological Data Series
...Show More Authors

A multivariate multisite hydrological data forecasting model was derived and checked using a case study. The philosophy is to use simultaneously the cross-variable correlations, cross-site correlations and the time lag correlations. The case study is of two variables, three sites, the variables are the monthly rainfall and evaporation; the sites are Sulaimania, Dokan, and Darbandikhan.. The model form is similar to the first order auto regressive model, but in matrices form. A matrix for the different relative correlations mentioned above and another for their relative residuals were derived and used as the model parameters. A mathematical filter was used for both matrices to obtain the elements. The application of this model indicates it's capability of preserving the statistical characteristics of the observed series. The preservation was checked by using (t-test) and (F-test) for the monthly means and variances which gives 98.6% success for means and 81% success for variances. Moreover for the same data two well-known models were used for the sake of comparison with the developed model. The single-site singlevariable auto regressive first order and the multi-variable single-site models. The results of the three models were compared using (Akike test) which indicates that the developed model is more successful ,since it gave minimum (AIC) value for Sulaimania rainfall, Darbandikhan rainfall, and Darbandikhan evaporation, while Matalas model gave minimum (AIC) value for Sulaimania evaporation and Dokan rainfall, and Markov AR (1) model gave minimum (AIC) value for only Dokan evaporation).However, for these last cases the (AIC) given by the developed model is slightly greater than the minimum corresponding value.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri May 18 2018
Journal Name
Thesis
The Arabian killifish (Aphanius dispar) as a novel model for mycophysiological studies.
...Show More Authors

Abstract Candida albicans is a commensal fungal pathogen that grows in yeast and hyphal forms in the human gut. C. albicans causes mucosal and cutaneous diseases that can result in significant mortality following systematic infections and it also exhibits drug resistance. Zebrafish have been an excellent model to investigate C. albicans infections because of their transparency and the availability of many transgenic lines. However, there is a limitation in using zebrafish as a model because the fish embryos cannot survive at 37°C therefore it is not suitable for studying Candida infections at physiological relevant human body temperature. In this thesis, the normal embryonic development of Arabian killifish (A. dispar) is investigated, rev

... Show More
Publication Date
Sat Dec 30 2023
Journal Name
Journal Of Economics And Administrative Sciences
About Semi-parametric Methodology for Fuzzy Quantile Regression Model Estimation: A Review
...Show More Authors

In this paper, previous studies about Fuzzy regression had been presented. The fuzzy regression is a generalization of the traditional regression model that formulates a fuzzy environment's relationship to independent and dependent variables. All this can be introduced by non-parametric model, as well as a semi-parametric model. Moreover, results obtained from the previous studies and their conclusions were put forward in this context. So, we suggest a novel method of estimation via new weights instead of the old weights and introduce

Paper Type: Review article.

another suggestion based on artificial neural networks.

View Publication Preview PDF
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
Evaluation of a fire safety risk prediction model for an existing building
...Show More Authors
Abstract<p>Fire is one of the most critical risks devastating to human life and property. Therefore, humans make different efforts to deal with fire hazards. Many techniques have been developed to assess fire safety risks. One of these methods is to predict the outbreak of a fire in buildings, and although it is hard to predict when a fire will start, it is critical to do so to safeguard human life and property. This research deals with evaluating the safety risks of the existing building in the city of Samawah/Iraq and determining the appropriateness of these buildings in terms of safety from fire hazards. Twelve parameters are certified based on the National Fire Protection Association (NFPA20</p> ... Show More
View Publication
Scopus (2)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Tue Dec 20 2022
Journal Name
2022 International Conference On Computer And Applications (icca)
Improve Data Mining Techniques with a High-Performance Cluster
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Thu Dec 21 2023
Journal Name
Mathematical Modelling Of Engineering Problems
Enhancing Spatial Accuracy of OpenStreetMap Data: A Geometric Approach
...Show More Authors

OpenStreetMap (OSM), recognised for its current and readily accessible spatial database, frequently serves regions lacking precise data at the necessary granularity. Global collaboration among OSM contributors presents challenges to data quality and uniformity, exacerbated by the sheer volume of input and indistinct data annotation protocols. This study presents a methodological improvement in the spatial accuracy of OSM datasets centred over Baghdad, Iraq, utilising data derived from OSM services and satellite imagery. An analytical focus was placed on two geometric correction methods: a two-dimensional polynomial affine transformation and a two-dimensional polynomial conformal transformation. The former involves twelve coefficients for ad

... Show More
View Publication
Scopus Crossref
Publication Date
Sun Dec 31 2023
Journal Name
International Journal On Technical And Physical Problems Of Engineering
A Multiple System Biometric System Based on ECG Data
...Show More Authors

A Multiple System Biometric System Based on ECG Data

Scopus (1)
Scopus
Publication Date
Sat Jul 01 2017
Journal Name
2017 Computing Conference
Protecting a sensitive dataset using a time based password in big data
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Optimized Artificial Neural network models to time series
...Show More Authors

        Artificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and

... Show More
View Publication Preview PDF
Scopus (31)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Sun Mar 01 2009
Journal Name
Journal Of Economics And Administrative Sciences
Methods of forecasting demandOn the blood substanceApplied study at the National Blood Transfusion Center
...Show More Authors

The current research deals with short term forecasting of demand on Blood material, and its' problem represented by increasing of forecast' errors in The National Center for Blood Transfusion because using inappropriate method of forecasting by Centers' management, represented with Naive Model. The importance of research represented by the great affect for forecasts accuracy on operational performance for health care organizations, and necessity of providing blood material with desired quantity and in suitable time. The literatures deal with subject of short term forecasting of demand with using the time series models in order to getting of accuracy results, because depending these models on data of last demand, that is being sta

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 31 2022
Journal Name
Journal Of Economics And Administrative Sciences
Using Some Estimation Methods for Mixed-Random Panel Data Regression Models with Serially Correlated Errors with Application
...Show More Authors

This research includes the study of dual data models with mixed random parameters, which contain two types of parameters, the first is random and the other is fixed. For the random parameter, it is obtained as a result of differences in the marginal tendencies of the cross sections, and for the fixed parameter, it is obtained as a result of differences in fixed limits, and random errors for each section. Accidental bearing the characteristic of heterogeneity of variance in addition to the presence of serial correlation of the first degree, and the main objective in this research is the use of efficient methods commensurate with the paired data in the case of small samples, and to achieve this goal, the feasible general least squa

... Show More
View Publication Preview PDF