This paper describes a practical study on the impact of learning's partners, Bluetooth Broadcasting system, interactive board, Real – time response system, notepad, free internet access, computer based examination, and interaction classroom, etc, had on undergraduate student performance, achievement and involving with lectures. The goal of this study is to test the hypothesis that the use of such learning techniques, tools, and strategies to improve student learning especially among the poorest performing students. Also, it gives some kind of practical comparison between the traditional way and interactive way of learning in terms of lectures time, number of tests, types of tests, student's scores, and student's involving with lectures. This paper studies the effect of using relatively new technology appearing in classroom today which is real time response system (voting system), that serves as real – time windows into each students understand of concepts. These devices can provide a foundation decision making based on data at scale never before possible as well as increasing students learning and engagement with each other as well with the lecturer, also, another new technology the "Bluetooth broadcasting system" is applied which is one of the moderate technique towards M- learning, this tool is used to transfer audio, video, text, notes, etc to the mobile of the students as well as laptop. The computer based examination, interactive board, and notepad as well as free wire and wireless internet access are used to close the digital divide and increasing technology literacy in all students which was one of the challenges, additional challenges include “social loafing,” characterized by
students who work less diligently than they otherwise might, or who become frustrated by course material or technology and thus less engaged. Finally the other colleague's resistance to the use of technology in learning and its effect on students learning is discussed based on practical situations.
In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show MoreThe contemporary business environment is witnessing increasing calls for modifications to the traditional cost system, and a trend towards adopting cost management techniques to provide appropriate financial and non-financial information for senior and executive departments, including the Resource Consumption Accounting (RCA) technique in question, which classifies costs into fixed and variable to support the decision-making process. Moreover, (RCA) combines two approaches to cost estimation, the first based on activity-based cost accounting (ABC) and the second on the German cost accounting method (GPK). The research aims to provide a conceptual vision for resource consumption accounting, after Considering it as an accounting te
... Show MoreData scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for
The aim of the research is to identify learning difficulties and their role in children's perception of self-concept. The researcher adopted the descriptive and analytical approach method in this study. A questionnaire was designed by the researcher to collect some related information such as biodata, family, health, diagnostic and behavioral patterns of the case. In addition, the researcher adopted the scale of learning difficulties for elementary school students prepared by Zaidan Ahmed Al-Sartawi (1995), the scale of student appreciation for the survey of learning difficulties for primary school students by Michael Best, which was translated to the Arabic language by (Saeed Abdullah Debis). The researcher adopted also the Self-Concept
... Show MoreThe rapid development of telemedicine services and the requirements for exchanging medical information between physicians, consultants, and health institutions have made the protection of patients’ information an important priority for any future e-health system. The protection of medical information, including the cover (i.e. medical image), has a specificity that slightly differs from the requirements for protecting other information. It is necessary to preserve the cover greatly due to its importance on the reception side as medical staff use this information to provide a diagnosis to save a patient's life. If the cover is tampered with, this leads to failure in achieving the goal of telemedicine. Therefore, this work provides an in
... Show MoreSelf-driving automobiles are prominent in science and technology, which affect social and economic development. Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural Network (DNN) for predicting the steerin
... Show MoreMindfulness is considered a process to draw an image of the active event and to creat new social varieties which leaves the individuals open to modernity and to be sensitive towards the context. in contrast, when individuals act with less attention, they need to be more determined concerning the varieties and events of the past . and as a result , they become unaware of the characteristics that creat the individual condition .The problem of the current study is represented in asking about the nature of the possible relationship between mindfulness and self-regulated learning within specific demographic frame of an importantsocial category represented in university students where no previous researches nor theories have agreed on the natu
... Show MoreThe current study investigates the role of smart sports bracelets on physical and motor skills development among youth volleyball players, closing the research gap of wearable technology in sport training. Understanding the necessity of up-to-date training measures of handicaps for perfection of athletic performance, the research is focused on comparison of the effect of strength, agility and flexibility achieved with the use of smart sports bracelet with real time feedback (test group) and without (control group). The research adopted a quasi-experimental design through a sample of (12) players et al.-Karkh Sports Club, (6) of them were in the experimental group (who used the smart bracelet) and (6) of them were in the control group (who u
... Show MoreThe most significant function in oil exploration is determining the reservoir facies, which are based mostly on the primary features of rocks. Porosity, water saturation, and shale volume as well as sonic log and Bulk density are the types of input data utilized in Interactive Petrophysics software to compute rock facies. These data are used to create 15 clusters and four groups of rock facies. Furthermore, the accurate matching between core and well-log data is established by the neural network technique. In the current study, to evaluate the applicability of the cluster analysis approach, the result of rock facies from 29 wells derived from cluster analysis were utilized to redistribute the petrophysical properties for six units of Mishri
... Show More