Finite element modeling of transient temperature distribution is used to understand physical phenomena occurring during the dwell (penetration) phase and moving of welding tool in friction stir welding (FSW) of 5mm plate made of 7020-T53 aluminum alloy at 1400rpm and 40mm/min.
Thermocouples are used in locations near to the pin and under shoulder surface to study the welding tool penetration in the workpiece in advance and retreate sides along welding line in three positions (penetrate (start welding) , mid, pullout (end welding)).
Numerical results of ANSYS 12.0 package are compared to experimental data including axial load measurements at different tool rotational speeds (710rpm.900rpm.1120rpm and 1400rpm) Based on the experimental records of transient temperature at several specific locations of thermocouples during the friction stir welding process the temperatures are higher on the advancing side (629.2 oK) than the retreating side (605 oK) along welding line and temperature in the top of workpiece under tool shoulder is higher(645 oK) than bottom (635.79oK). The results of the simulation are in good agreement with that of experimental results. The peak temperature obtained was 70% of the melting point of parent metal.
As an important resource, entanglement light source has been used in developing quantum information technologies, such as quantum key distribution(QKD). There are few experiments implementing entanglement-based deterministic QKD protocols since the security of existing protocols may be compromised in lossy channels. In this work, we report on a loss-tolerant deterministic QKD experiment which follows a modified “Ping-Pong”(PP) protocol. The experiment results demonstrate for the first time that a secure deterministic QKD session can be fulfilled in a channel with an optical loss of 9 dB, based on a telecom-band entangled photon source. This exhibits a conceivable prospect of ultilizing entanglement light source in real-life fiber-based
... Show MoreA standard theoretical neutron energy flux distribution is achieved for the triton-triton nuclear fusion reaction in the range of triton energy about ≤10 MeV. This distribution give raises an evidence to provide the global calculations including the characteristics fusion parameters governing the T-T fusion reaction.
One of the unique properties of laser heating applications is its powerful ability for precise pouring of energy on the needed regions in heat treatment applications. The rapid rise in temperature at the irradiated region produces a high temperature gradient, which contributes in phase metallurgical changes, inside the volume of the irradiated material. This article presents a comprehensive numerical work for a model based on experimentally laser heated AISI 1110 steel samples. The numerical investigation is based on the finite element method (FEM) taking in consideration the temperature dependent material properties to predict the temperature distribution within the irradiated material volume. The finite element analysis (FEA) was carried
... Show MoreOne of the most important parameters determining structural members' durability and strength is the fire flame's influence and hazard. Some engineers have advocated using advanced analytical models to predict fire spread impact within a compartment and considering finite element models of structural components to estimate the temperatures within a component using heat transfer analysis. This paper presented a numerical simulation for a reinforced concrete beam’s structural response in a case containing Water Absorbing Polymer Spheres (WAPS) subjected to fire flame effect. The commercial finite element package ABAQUS was considered. The relevant geometrical and material parameters of the reinforced concrete beam model a
... Show MoreThe chemical additives used to enhance the properties of drilling mud cause damage to humans and the environment. Therefore, it is necessary to search for alternative additives to add them to the drilling mud. Thus, this study investigates the effects of pomegranate peel and grape seed powders as natural waste when added to un-weighted water-based mud. The test includes measurements of the rheological properties and filtration, as well as the alkanity and density of the drilling mud. The results showed a decrease in PH values with an increase in the concentrations of pomegranate peel or grapeseed, and a decrease in mud density with an increase in powders of pomegranate peel and grape seed concentrations that resulted f
... Show MoreThe study aims to investigate the effect of Al2O3 and Al additions to Nickel-base superalloys as a coating layer on oxidation resistance, and structural behavior of nickel superalloys such as IN 738 LC. Nickel-base superalloys are popular as base materials for hot components in industrial gas turbines such as blades due to their superior mechanical performance and high-temperature oxidation resistance, but the combustion gases' existence generates hot oxidation at high temperatures for long durations of time, resulting in corrosion of turbine blades which lead to massive economic losses. Turbine blades used in Iraqi electrical gas power stations require costly maintenance using traditional processes regularly. These blades are made
... Show MoreThis study focuses on producing wood-plastic composites using unsaturated polyester resin reinforced with Pistacia vera shell particles and wood industry waste powder. Composites with reinforcement ratios of 0%, 20%, 30%, and 40% were prepared and tested for thermal conductivity, impact strength, hardness, and compressive strength. The results revealed that thermal conductivity increases with reinforcement, while maintaining good thermal insulation, reaching a peak value of 0.633453 W/m·K. Hardness decreased with increased reinforcement, reaching a minimum nominal hardness value of 0.9479. Meanwhile, impact strength and compressive strength improved, with peak values of 14.103 k/m² and 57.3864568 MPa, respectively. The main aim is to manu
... Show More