When employing shorter (sub picosecond) laser pulses, in ablation kinetics the features appear which can no longer be described in the context of the conventional thermal model. Meanwhile, the ablation of materials with the aid of ultra-short (sub picosecond) laser pulses is applied for micromechanical processing. Physical mechanisms and theoretical models of laser ablation are discussed. Typical associated phenomena are qualitatively regarded and methods for studying them quantitatively are considered. Calculated results relevant to ablation kinetics for a number of substances are presented and compared with experimental data. Ultra-short laser ablation with two-temperature model was quantitatively investigated. A two-temperature model for the description of transition phenomena in a non-equilibrium electron gas and a lattice under picosecond laser irradiation is proposed. Some characteristics are hard to measure directly at all. That is why the analysis of physical mechanisms involved in the ablation process by ultra-short laser pulses has to be performed on the basis of a theoretical consideration of `indirect' experimental data. For Copper and Nickel metal targets, the two-temperature model calculations explain that the temperature of the electron subsystem increased suddenly and approached a peak value at the end of laser pulse. In addition, the temperature profile of lattice temperature subsystem evolution slowly, and still increasing after the end of laser pulse. A good agreement prevails when a comparison between the present results and published results.
CdS films were prepared by thermal evaporation technique at thickness 1 µm on glass substrates and these films were doped with indium (3%) by thermal diffusion method. The electrical properties of these have been investigated in the range of diffusion temperature (473-623 K)> Activation energy is increased with diffusion temperature unless at 623 K activation energy had been decreased. Hall effect results have shown that all the films n-type except at 573 and 623 K and with increase diffusion temperature both of concentration and mobility carriers were increased.
Phase-change materials (PCMs) have a remarkable potential for use as efficient energy storage means. However, their poor response rates during energy storage and retrieval modes require the use of heat transfer enhancers to combat these limitations. This research marks the first attempt to explore the potential of dimple-shaped fins for the enhancement of PCM thermal response in a shell-and-tube casing. Fin arrays with different dimensions and diverse distribution patterns were designed and studied to assess the effect of modifying the fin geometric parameters and distribution patterns in various spatial zones of the physical domain. The results indicate that increasing the number of
DBN Rashid, INTERNATIONAL JOURNAL OF DEVELOPMENT IN SOCIAL SCIENCE AND HUMANITIES, 2021
According to the theory of regular geometric functions, the relevance of geometry to analysis is a critical feature. One of the significant tools to study operators is to utilize the convolution product. The dynamic techniques of convolution have attracted numerous complex analyses in current research. In this effort, an attempt is made by utilizing the said techniques to study a new linear complex operator connecting an incomplete beta function and a Hurwitz–Lerch zeta function of certain meromorphic functions. Furthermore, we employ a method based on the first-order differential subordination to derive new and better differential complex inequalities, namely differential subordinations.
In this work, the surface of the telescope’s mirror is cleaned using an atmospheric-pressure radio frequency plasma jet (APRFPJ), which is generated by Argon gas between two coaxial metal electrodes. The RF power supply is set to 2 MHz frequencies with three different power levels: 20, 50, and 80 W. Carbon, that has adhered to the surface, can be effectively removed using the plasma cleaning technique, which also modifies any residual bonds. The cleaned surface was clearly distinguished using an optical emission spectroscopy (OES) technique and a water contact angle (WCA) analyzer for the activation property on their surfaces. The sample showed a super hydrophilic surface at an angle of 1° after 2.5 minutes of plasma tre
... Show MoreUsing remote sensing technology and modeling methodologies to monitor changes in land surface temperature (LST) and urban heat islands (UHI) has become an essential reference for making decisions on sustainable land use. This study estimates LST and UHI in Salah al-din Province to contribute to land management, Urban planning, or climate resilience in the region; as a result of environmental changes in recent years, LANDSAT Satellite Imagery from 2014- 2024 was implemented to estimate the LST and UHI indexes in Salah al-din Province, ArcGIS 10.7 was use to calculate the indices, and The normalized mean vegetation index (NDVI) was calculated as it is closely related to extracting (LST
In this work we present a detailed study on anisotype nGe-pSi heterojunction (HJ) used as photodetector in the wavelength range (500-1100 nm). I-V characteristics in the dark and under illumination, C-V characteristics, minority carriers lifetime (MCLT), spectral responsivity, field of view, and linearity were investigated at 300K. The results showed that the detector has maximum spectral responsivity at λ=950 nm. The photo-induced open circuit voltage decay results revealed that the MCLT of HJ was around 14.4 μs