The thermal and electrical performance of different designs of air based hybrid photovoltaic/thermal collectors is investigated experimentally and theoretically. The circulating air is used to cool PV panels and to collect the absorbed energy to improve their performance. Four different collectors have been designed, manufactured and instrumented namely; double PV panels without cooling (model I), single duct double pass collector (model II), double duct single pass (model III), and single duct single pass (model IV) . Each collector consists of: channel duct, glass cover, axial fan to circulate air and two PV panel in parallel connection. The temperature of the upper and lower surfaces of PV panels, air temperature, air flow rate, air pressure drop, wind speed, solar radiation and ambient temperature were measured. The power produced by solar cells is measured also. A theoretical model has been developed for the collector model IV based on energy balance principle. The prediction of the thermal and hydraulic performance was obtained for the fourth model of PV/T collector by developing a Matlab computer program to solve the numerical model. The experimental results show that the combined efficiency of model III is higher than that of models II and IV. The pressure drop of model III is less than that of models I and IV, by (43.67% and 49%). The average percentage error between the theoretical and experimental results was 9.67%.
Collapse of the vapor bubble condensing in an immiscible is investigated for n-pentane and n-hexane vapors condensing in cold water and n-pentane in two different compositions of glycerin- water mixture. The rise velocity and the drag coefficient of the two-phase bubble are measured.
This study examines the causes of time delays and cost overruns in a selection of thirty post-disaster reconstruction projects in Iraq. Although delay factors have been studied in many countries and contexts, little data exists from countries under the conditions characterizing Iraq during the last 10-15 years. A case study approach was used, with thirty construction projects of different types and sizes selected from the Baghdad region. Project data was gathered from a survey which was used to build statistical relationships between time and cost delay ratios and delay factors in post disaster projects. The most important delay factors identified were contractor failure, redesigning of designs/plans and change orders, security is
... Show MoreThis study is aimed to Green-synthesize and characterize Al NPs from Clove (Syzygium aromaticum
L.) buds plant extract and to investigate their effect on isolated and characterized Salmonella enterica growth.
S. aromaticum buds aqueous extract was prepared from local market clove, then mixed with Aluminum nitrate
Al(NO3)3. 9 H2O, 99.9% in ¼ ratio for green-synthesizing of Al NPs. Color change was a primary confirmation
of Al NPs biosynthesis. The biosynthesized nanoparticles were identified and characterized by AFM, SEM,
EDX and UV–Visible spectrophotometer. AFM data recorded 122nm particles size and the surface roughness
RMs) of the pure S. aromaticum buds aqueous extract recorded 17.5nm particles s
Biodiesel is an environmentally friendly fuel and a good substitution for the fossil fuel. However, the purity of this fuel is a major concern that challenges researchers. In this study, a calcium oxide based catalyst has been prepared from local waste eggshells by the calcination method and tested in production biodiesel. The eggshells were powdered and calcined at different temperatures (700, 750, 800, 850 and 900 °C) and periods of time (1, 2, 3, 4 and 5 hr.). The effect of calcination temperature and calcination time on the structure and activity of the solid catalyst were examined by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Brunaure-Emmett-Teller (BET). The optimum catalyst performance was obtained at 900 °C
... Show MorePolycystic ovary syndrome (PCOS) is reproductive, endocrine, and metabolic disorder affecting females. The pathology of PCOS is complicated and associated to chronic low-grade inflammation, this includes a disruption in pro-inflammatory factor production, leukocytosis, and endothelial cell dysfunction, also associated with high level of pro-inflammatory cytokines, chemokines and leukocyte count. In addition, PCOS is characterized by hormonal and immunological dysfunction. Inflammation of the ovary affects ovulation and induces or aggravates systemic inflammation. Macrophage inflammatory protein-1 (MIP-1), a pro-inflammatory chemokine, is crucial in the recruitment of inflammatory and immunological cells to the place of inflammation
... Show MoreEpithelial‐mesenchymal transition (
Diabetic nephropathy is characterized by persistent microalbuminuria and metabolic changes that decline renal functions. Researchers have been prompted to explore new biomarkers such as KIM-1 and nephrin that may enhance the identification of disease. Objective: To Evaluate biomarker levels of kidney injury molculre-1 (KIM-1) concentration and nephrin as early and sensitive markers of nephropathy in type 2 diabetic patients. Method: One hundred T2DM patients were included in a cross-sectional study at the specialized center for endocrinology and diabetes, Baghdad. The first group includes 50 diabetic nephropathy (DN) patients, and the second group includes 50 T2DM patients without DN. Biochemical and clinical parameters were reported for pa
... Show MoreIn the present study, the effectiveness of a procedure of electrocoagulation for removing chemical oxygen demand (COD) from the wastewater of petroleum refinery has been evaluated. Aluminum and stainless steel electrodes were used as a sacrificial anode and cathode respectively. The effect of current density (4-20mAcm−2), pH (3-11), and NaCl concentration (0-4g/l) on efficiency of removal of chemical oxygen demand was investigated. The results have shown that increasing of current density led to increase the efficiency of COD removal while increasing NaCl concentration resulted in decreasing of COD removal efficiency. Effect of pH was found to be lowering COD re
The adsorption of Cr (VI) from aqueous solution by spent tea leaves (STL) was studied at different initial Cr (VI) concentrations, adsorbent dose, pH and contact time under batch isotherm experiments The adsorption experiments were carried out at 30°C and the effects of the four parameters on chromium uptake to establish a mathematical model description percentage removal of Cr (VI). The
analysis results showed that the experimental data were adequately fitted to second order polynomial model with correlation coefficients for this model was (R2 = 0.9891). The optimum operating parameters of initial Cr (VI) concentrations, adsorbent dose, pH and contact time were 50 mg/l, 0.7625 g, 3 and 100 min, respectively. At these conditions, th