Preferred Language
Articles
/
joe-2189
Effect of Steel Fibers on the Properties of Refractory Free Cement Concrete
...Show More Authors

Free cement refractory concrete is a type of refractory concrete with replacing alumina cement by bonding materials such as white kaolin, red kaolin and fumed silica. The free cement refractory concrete used in many applications like Petrochemicals, iron furnaces and cement production industries. The research clarifies the effect of steel fibers with two types crimped steel fibers and hooked steel
fibers with percentages 0.5%, 1% and 1.5% by volume from weight of bauxite aggregates. The additions of steel fibers with two types gave good properties in high temperatures where the specimens keep the dimension without failure and the properties made the best. the percentage of increasing for thermal conductivity was 44% for 1.5% crimped fibers and 42.8% for 1.5% hooked end fibers and the percentage increasing in bulk density of free cement refractory concrete was 30% for 1.5% crimped fibers and 27% for 15% hooked end fibers . From this study can be concluded that the best types of steel fibers which used in free cement refractory concrete is the crimped type with percentage 1.5%.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Oct 04 2022
Journal Name
Lecture Notes In Mechanical Engineering
Effect of Stator Core Materials on the Performance Characteristics of a Free Piston Linear Generator Engine
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sun May 22 2022
Journal Name
Materials
Size Effect of Hydrated Lime on the Mechanical Performance of Asphalt Concrete
...Show More Authors

Despite widespread agreement on the beneficial nature of hydrated lime (HL) addition to asphalt concrete mixes, understanding of the effect of HL particle size is still limited. Previous investigations have focused mainly on two different size comparisons, and so certain guidance for a practical application cannot yet be produced. This study investigates three distinct sizes of HL, in the range of regular, nano, and sub-nano scales, for their effects on the properties of modified asphalt concretes. Five different percentages of HL as a partial replacement of ordinary limestone filler in asphalt concrete mixes were studied for wearing course application purposes. Experimental tests were conducted to evaluate the mechanical properties

... Show More
View Publication
Scopus (18)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Wed Oct 23 2024
Journal Name
Polymers
Improving the Mechanical, Thermoelectric Insulations, and Wettability Properties of Acrylic Polymers: Effect of Silica or Cement Nanoparticles Loading and Plasma Treatment
...Show More Authors

The acrylic polymer composites in this study are made up of various weight ratios of cement or silica nanoparticles (1, 3, 5, and 10 wt%) using the casting method. The effects of doping ratio/type on mechanical, dielectric, thermal, and hydrophobic properties were investigated. Acrylic polymer composites containing 5 wt% cement or silica nanoparticles had the lowest abrasion wear rates and the highest shore-D hardness and impact strength. The increase in the inclusion of cement or silica nanoparticles enhanced surface roughness, water contact angle (WCA), and thermal insulation. Acrylic/cement composites demonstrated higher mechanical, electrical, and thermal insulation properties than acrylic/silica composites because of their lowe

... Show More
View Publication
Scopus (4)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
The Effect Of Curing Types On Compressive Strength Of High Performance Concrete
...Show More Authors

The present investigation considers the effect of curing temperatures (30, 40, and 50˚C) and curing compound method on compressive strength development of high performance concrete, and compares the results with concrete cured at standard conditions and curing temperature (21˚C). The experimental results showed that at early ages, the rate of strength development at high curing temperature is greater than at lower curing temperature, the maximum increasing percentage in compressive strength is 10.83% at 50C˚ compared with 21C˚ in 7days curing age. However, at later ages, the strength achieved at higher curing temperature has been less, and the maximum percentage of reduction has been 5.70% at curing temperature 50C˚ compared with 21

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Sep 26 2025
Journal Name
Journal Of Baghdad College Of Dentistry
Studying the effect of addition a composite of silanized Nano-Al2O3 and plasma treated polypropylene fibers on some physical and mechanical properties of heat cured PMMA denture base material
...Show More Authors

Background: Polymethyl methacrylate (PMMA) is the most commonly used material in denture fabrication. The material is far from ideal in fulfilling the mechanical requirements, like low impact and transverse strength, poor thermal conductivity. The purpose of this study was to evaluate the effect of addition a composite of surface treated Nano Aluminum oxide (Al2O3) filler and plasma treated polypropylene fiber (PP) on some properties of denture base material. Materials and methods: One hundred fifty prepared specimens were divided into 5 groups according to the tests, each group consisted of 30 specimens and these were subdivided into 3 groups (unreinforced heat cured acrylic resin as control group),reinforced acrylic resin with( 0.5%wt Nan

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Sustainable Construction Materials And Technologies (scmt)
TRIAXIAL TEST OF HYDRATED LIME ON THE MECHANICAL PROPERTIES OF HOT MIX ASPHALT CONCRETE
...Show More Authors

This paper reports on the experimental study, which conducted a series of triaxial tests for the asphalt concrete using hydrated lime as a mineral additive. Three HMA mixes, prepared by the specification for wearing, levelling and base layers, were studied under three different temperatures. The test results have demonstrated that, compared with the control mixes excluding HL, the permanent deformation resistance of the HL modified mixes has significant improvement. The deformation has been reduced at the same load repetition number, meanwhile the flow number has been considerably increased. The degree of improvement in permanent deformation resistance using HL is more pronounced at high stress deviation states and high temperature.

... Show More
View Publication
Crossref
Publication Date
Mon Dec 11 2017
Journal Name
Al-khwarizmi Engineering Journal
The Effects of Long-Term Operation and High Temperature on Material Properties of Austenitic Stainless Steel Type 321H
...Show More Authors

Changes in mechanical properties of material as a result of service in different conditions can be provided by mechanical testing to assist the estimation of current internal situation of these materials, or the degree of deterioration may exist in furnaces serviced at high temperature and exceed their design life. Because of the rarity works on austenitic stainless steel material type AISI 321H, in this work, ultimate tensile strength, yield strength, elongation, hardness, and absorbed energy by impact are evaluated based on experimental data obtained from mechanical testing. Samples of tubes are extracted from furnace belong to hydrotreaterunit, also samples from un-used tube material are used to make comparisons between these properti

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Aug 01 2015
Journal Name
Journal Of Engineering
Influence of Internal Sulfate Attack on Some Properties of High Strength Concrete
...Show More Authors

One of the most important problems that faces the concrete industry in Iraq is the deterioration due to internal sulfate attack , since it reduces the compressive strength and increases the expansion of concrete. Consequently, the concrete structure may be damage .The effects of total and total effective sulfate contents on high strength concrete (HSC) have been studied in the present study. The research studied the effect of sulfate content in cement , sand and gravel , as well as comparing the total sulfate content with the total effective SO3 content. Materials used were divided into two groups of SO3 in cement ,three groups of SO3 in sand ,and two groups of SO3 in gravel. The results show that considering the total effective sulfate con

... Show More
Preview PDF
Publication Date
Sat Aug 01 2015
Journal Name
Journal Of Engineering
Influence of Internal Sulfate Attack on Some Properties of High Strength Concrete
...Show More Authors

One of the most important problems that faces the concrete industry in Iraq is the deterioration due to internal sulfate attack , since it  reduces the compressive strength and increases the expansion of concrete. Consequently, the concrete structure may be damage .The effects of total and total effective sulfate contents on high strength concrete (HSC) have been studied in the present study.

The research studied the effect of sulfate content in cement , sand and gravel , as well as comparing  the total sulfate content with the total effective SO3 content. Materials used were divided into two groups of SO3 in cement ,three groups of SO3 in sand ,and two groups of SO

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 01 2022
Journal Name
Case Studies In Construction Materials
Push-out test of waste sawdust-based steel-concrete – Steel composite sections: Experimental and environmental study
...Show More Authors

View Publication
Scopus (17)
Crossref (5)
Scopus Clarivate Crossref