Experimental work was carried out to investigate the effect of fire flame (high temperature) on specimens of one way slabs using Self Compacted Concrete (SCC). By using furnace manufactured for this purpose, twenty one reinforced concrete slab specimens were exposed to direct fire flame. All of specimens have the same dimensions. The slab specimens were cooled in two types, gradually by left them in the air and suddenly by using water. After that the specimens were tested under two point loads, to study, the effect of
different: temperature levels (300ºC, 500ºC and 700ºC), and cooling rate (gradually and sudden cooling conditions) on the concrete compressive strength, modulus of rupture, flexural strength and the behavior of reinforced concrete slab specimens and comparing the results with specimens without burning (reference specimens). The results showed that, the concrete compressive strength, concrete modulus of rupture and the flexural strength decreases while the maximum (central) deflection increases with increasing the fire flame temperature. For suddenly cooled specimens the residual flexural strength is less than that of gradually cooled specimens while the deflection is greater. For slabs with 20 MPa concrete strength and gradually cooled, the residual bending strength percent is 81.5%, 75% and 62.3% ,while the increase in central deflection is 5%, 33%, and 105% at burning temperature 300ºC, 500ºC and
700ºC respectively. For suddenly cooled specimens of the same strength and exposed to the same temperatures above the residual flexural strength is 77.9%, 68.3% and 58.3% while the increase in central deflection is 25%, 52%, and 118% respectively. When the strength of concrete specimens increase, the residual flexural strength experiences small increase and the increase is of lower rate in the central deflection for 300 ºC and 500 ºC burn temperatures while the decrease is significant for 700 ºC burning temperature.
The compound [L] was produced in the current study through the reaction of 4-aminoacetophenon with 4-methoxyaniline in the cold, concentrated HCl with 10% NaNO2. Curcumin, several transition metal complexes (Ni (II), La (III), and Hg (II)), and compound [L] were combined in EtOH to create new complexes. UV-vis spectroscopy, FTIR, AA, TGA-DSC, conductivity, chloride content, and elemental analysis (CHNS) were used to describe the structure of produced complexes. Biological activities against fungi, S. aureus (G+), Pseudomonas (G-), E. coli (G-), and Proteus (G-) were demonstrated using complexes. Depending on the outcomes of the aforementioned methods, octahedral formulas were given as the geometrical structures for each created comp
... Show MoreLimitations of the conventional diagnostic techniques urged researchers to seek novel methods to predict, diagnose, and monitor periodontal disease. Use of the biomarkers available in oral fluids could be a revolutionary surrogate for the manual probing/diagnostic radiograph. Several salivary biomarkers have the potential to accurately discriminate periodontal health and disease. This study aimed to determine the diagnostic sensitivity and specificity of salivary interleukin (IL)‐17, receptor activator of nuclear factor‐κB ligand (RANKL), osteoprotegerin (OPG), RANKL/OPG for differentiating (1) periodontal health from disease and (2) stable a
5-((2,4-dibromo-6-((cyclohexyl(methyl)amino)methyl)phenyl)diazenyl)quinolin-8-ol azo ligand (L) has been synthesized through the reaction of diazonium salt for 2,4-dibromo-6-((cyclohexyl(methyl)amino)methyl)aniline with 8-hydroxyquinoline. The azo ligand (L) was characterized utilizing spectroscopic techniques, including FTIR, UV-Vis, 1H and 13C NMR, as well as mass spectrometry and micro-elemental analysis (C.H.N). Metal complexes containing Co(II), Ni(II), Cu(II), and Zn(II) were synthesized and analyzed through mass spectrometry, flame atomic absorption, elemental analysis (C.H.N), infrared and UV-Vis spectroscopy, along with measurements of conductivity and magnetic properties. The experimental findings suggested that all met
... Show MoreFour complexes of Co(II),Ni(II),Cu(II) and Zn(II) with the azo ligand (4-chloro-N-(2-(dimethylamino)ethyl)-5-((2-hydroxy-4,6-dimethylphenol)diazenyl)-2-methoxybenzamide) L. The structure of ligand and complexes were confirmed on the basis of their analytical and spectral data, these dyes were tested as dyeing in cotton fabric, and also testing in light and cleaner firmness. Also, antimicrobial and antifungal activities of ligand and their complexes were evaluated and the results showed that the ZnL compound showed the higher antibacterial activity with inhibition zone of 13mm against Staphyloco-ccus epidermidis, Steptococcus sp. and Escherichia coli compared with ligand and other metal complexes .In case of ZnL compound the antifungal activ
... Show MoreThe aim of this study is to evaluate oxidative stress in diabetes mellitus (DM) Type1 by the measurement of Glucose-6-phosphate Dehydrogenase (G-6-PD), an enzyme expressed in human RBCs, is important in the generation of reduced glutathione which is the key product in oxidative stress controls. The Study was carried on 80 samples of blood and serum of National Diabetes Center (NDC). The study groups under fasting conditions and they divided as:20 samples of diabetes mellitus patients without complications and 20 samples of diabetes mellitus with cardiovascular (CV) complications and 20 samples of diabetes mellitus with Nephropathy (Neph) complications compared with 20 control group with average age (13-67) years.. The results sh
... Show More. New Schiff base ligand 2-((4-amino-5-(3, 4, 5-trimethoxybenzyl) pyrimidin2-ylimino) (phenyl)methyl)benzoic acid] = [HL] was synthesized using microwave irradiation trimethoprim and 2-benzoyl benzoic acid. Mixed ligand complexes of Mn((ІІ), Co(ІІ), Ni(ІІ), Cu(ІІ), Zn(ІІ) and Cd(ІІ) are reacted in ethanol with Schiff base ligand [HL] and 8-hydroxyquinoline [HQ] then reacted with metal salts in ethanol as a solvent in (1:1:1) ratio. The ligand [HL] is characterized by FTIR, UV-Vis, melting point, elemental microanalysis (C.H.N), 1H-NMR, 13C-NMR, and mass spectra. The mixed ligand complexes are characterized by infrared spectra, electronic spectra, (C.H.N), melting point, atomic absorption, molar conductance and magnetic m
... Show MoreFour complexes of Co(II),Ni(II),Cu(II) and Zn(II) with the azo ligand (4-chloro-N-(2-(dimethylamino)ethyl)-5-((2-hydroxy- 4,6-dimethylphenol)diazenyl)-2-methoxybenzamide) L. The structure of ligand and complexes were confirmed on the basis of their analytical and spectral data, these dyes were tested as dyeing in cotton fabric, and also testing in light and cleaner firmness. Also, antimicrobial and antifungal activities of ligand and their complexes were evaluated and the results showed that the ZnL compound showed the higher antibacterial activity with inhibition zone of 13mm against Staphyloco-ccus epidermidis, Steptococcus sp. and Escherichia coli compared with ligand and other metal complexes .In case of ZnL compound the antifungal acti
... Show MoreThe nuclear charge density distributions, form factors andcorresponding proton, charge, neutron, and matter root mean squareradii for stable 4He, 12C, and 16O nuclei have been calculated usingsingle-particle radial wave functions of Woods-Saxon potential andharmonic-oscillator potential for comparison. The calculations for theground charge density distributions using the Woods-Saxon potentialshow good agreement with experimental data for 4He nucleus whilethe results for 12C and 16O nuclei are better in harmonic-oscillatorpotential. The calculated elastic charge form factors in Woods-Saxonpotential are better than the results of harmonic-oscillator potential.Finally, the calculated root mean square radii usingWoods-Saxonpotentials ho
... Show MoreThe Co (II), Ni (II) ,Cu(II), Zn(II) ,Cd(II) and Hg(II) complexes of mixed of amino acid (L-Alanine ) and Trimethoprim antibiotic were synthesized. The complexes were characterized using melting point, conductivity measurement and determination the percentage of the metal in the complexes by flame (AAS). Magnetic susceptibility, Spectroscopic Method [FT-IR and UV-Vis]. The general formula have been given for the prepared mixed ligand complexes [M(Ala)2(TMP)(H2O)] where L- alanine (abbreviated as (Ala ) = (C5H9NO2) deprotonated primary ligand, L- Alanine ion .= (C5H8NO2-) Trimethoprim (abbreviated as (TMP ) = C10H11N3O3S M(II) = Co (II),Ni(II) ,Cu(II), Zn(II) ,Cd(II) and Hg(II). The results showed that the deprotonated L- Alanine b
... Show More