Most Internet-tomography problems such as shared congestion detection depend on network measurements. Usually, such measurements are carried out in multiple locations inside the network and relied on local clocks. These clocks usually skewed with time making these measurements unsynchronized and thereby degrading the performance of most techniques. Recently, shared congestion detection has become an important issue in many computer networked applications such as multimedia streaming and
peer-to-peer file sharing. One of the most powerful techniques that employed in literature is based on Discrete Wavelet Transform (DWT) with cross-correlation operation to determine the state of the congestion. Wavelet transform is used as a de-noising tool to reduce the effects of both clock skew and queuing delay fluctuations on the decision of congestion type. Since, classical Discrete Wavelet Transform (DWT) is not shift-invariant transform which is a very useful property particularly in signal de-noising problems. Therefore, another transform called Stationary Wavelet Transform (SWT) that possesses shiftinvariant property is suggested and used instead of DWT. The modified technique exhibits a better performance in terms of the time required to correctly detect the state of congestion especially with the existence of clock skew problem. The suggested technique is tested using simulations under different
environments.
For the period from February 2014 till May 2014, one hundred and nine lactose fermenter clinical isolates from different samples (urine, stool, wound swab, blood, and sputum) were collected from Alyarmok, Alkadimiya, and Baghdad teaching hospitals at Baghdad governorate. Identification of all Klebsiella pneumoniae isolates were carried out depending on macroscopic, microscopic characterizations, conventional biochemical tests, and Api 20E system. Fifty-three (48.62%) isolates represented K. pneumoniae; however, 51.73% represented other bacteria. Susceptibility test was achieved to all fifty-three K. pneumoniae isolates using five antibiotic disks (Ceftazidime, Ceftriaxone, Cefotaxime, Imipenem, and Meropenem). Most of tested isolates (90
... Show MoreThe Internet of Things (IoT) is an expanding domain that can revolutionize different industries. Nevertheless, security is among the multiple challenges that it encounters. A major threat in the IoT environment is spoofing attacks, a type of cyber threat in which malicious actors masquerade as legitimate entities. This research aims to develop an effective technique for detecting spoofing attacks for IoT security by utilizing feature-importance methods. The suggested methodology involves three stages: preprocessing, selection of important features, and classification. The feature importance determines the most significant characteristics that play a role in detecting spoofing attacks. This is achieved via two techniques: decision tr
... Show MoreBegomoviruses infecting zucchini squash were investigated. Leaf samples were collected from zucchini squash growing areas in Baghdad (Jhadryaa and Yusufiyah), Babylon (Jibela and Mahmudiyah) and Diyala (Khan Bani Saad) Provinces. Samples were screened for the presence of begomoviruses using polymerase chain reaction (PCR) and Deng genus specific primers. Sixteen out of 40 samples were begomovirus positive. Sequence analysis confirmed the detection of Tomato leaf curl Palampur virus (TLCPALV)
The lethality of inorganic arsenic (As) and the threat it poses have made the development of efficient As detection systems a vital necessity. This research work demonstrates a sensing layer made of hydrous ferric oxide (Fe2H2O4) to detect As(III) and As(V) ions in a surface plasmon resonance system. The sensor conceptualizes on the strength of Fe2H2O4 to absorb As ions and the interaction of plasmon resonance towards the changes occurring on the sensing layer. Detection sensitivity values for As(III) and As(V) were 1.083 °·ppb−1 and 0.922 °·ppb
Clinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b