Project management are still depending on manual exchange of information based on paper documents. Where design drawings drafting by computer-aided design (CAD), but the data needed by project management software can not be extracted directly from CAD, and must be manually entered by the user. The process of calculation and collection of information from drawings and enter in the project management software needs effort and time with the possibility of errors in the transfer and enter of information. This research presents an integrated computer system for building projects where the extraction and import quantities, through the interpretation of AutoCAD drawing with MS Access database of unit costs and productivities for the pricing and duration of tasks, then exported to MS Project and MS Excel. The system was developed by using Visual Basic and ActiveX automation technology for combining the above software. The system, also, can calculate quantities of materials. The system includes digitizer (on-screen takeoff) calculates the lengths and areas of the drawings to which the form of an image and scanned. The integrated system has been applied to case study, a storages building for hospital 260 beds. The results proved the effectiveness of the system for the conversion of information from the graphical form dwg to numerical formulas xlcx / xlc and mpp can be handled easily pleased and software are covered.
In this study, we review the ARIMA (p, d, q), the EWMA and the DLM (dynamic linear moodelling) procedures in brief in order to accomdate the ac(autocorrelation) structure of data .We consider the recursive estimation and prediction algorithms based on Bayes and KF (Kalman filtering) techniques for correlated observations.We investigate the effect on the MSE of these procedures and compare them using generated data.
Transforming the common normal distribution through the generated Kummer Beta model to the Kummer Beta Generalized Normal Distribution (KBGND) had been achieved. Then, estimating the distribution parameters and hazard function using the MLE method, and improving these estimations by employing the genetic algorithm. Simulation is used by assuming a number of models and different sample sizes. The main finding was that the common maximum likelihood (MLE) method is the best in estimating the parameters of the Kummer Beta Generalized Normal Distribution (KBGND) compared to the common maximum likelihood according to Mean Squares Error (MSE) and Mean squares Error Integral (IMSE) criteria in estimating the hazard function. While the pr
... Show MoreThis research aims to identify the impact of Daniel's model on the development of critical thinking. In order to achieve this objective, the following hypotheses are formulated: 1. There is no statistically significant difference at the significance level (0.05) between the average differences in the posttest scores of the experimental group taught according to Daniel's model and the control group taught according to the traditional method in the measure of critical thinking. 2. There is no statistically significant difference at the significance level (0.05) between the average differences in the preand post-tests scores of the experimental group taught according to Daniel's model in the measure of critical thinking. The current research i
... Show MoreThe researcher aims to Diagnose the reality of research variables, strategic leadership and decision support systems, and their impact on crisis management in the General Company for Steel Industries because of their important role in preventing crises and reducing their occurrence for the research company in particular and other companies in general affiliated with the Ministry of Industry and Minerals, as well as clarifying theoretical concepts of research variables As it included the answer to questions related to the research problem, including (Is there an impact of the strategic leadership in managing crises if decision support systems are used), and the researcher adopted the descriptive and analytical approach in its comp
... Show MoreConstruction contractors usually undertake multiple construction projects simultaneously. Such a situation involves sharing different types of resources, including monetary, equipment, and manpower, which may become a major challenge in many cases. In this study, the financial aspects of working on multiple projects at a time are addressed and investigated. The study considers dealing with financial shortages by proposing a multi-project scheduling optimization model for profit maximization, while minimizing the total project duration. Optimization genetic algorithm and finance-based scheduling are used to produce feasible schedules that balance the finance of activities at any time w
Effective decision-making process is the basis for successfully solving any engineering problem. Many decisions taken in the construction projects differ in their nature due to the complex nature of the construction projects. One of the most crucial decisions that might result in numerous issues over the course of a construction project is the selection of the contractor. This study aims to use the ordinal priority approach (OPA) for the contractor selection process in the construction industry. The proposed model involves two computer programs; the first of these will be used to evaluate the decision-makers/experts in the construction projects, while the second will be used to formul
The research has designed for studying the relationship between manufacturing strategy and its flexibility under the flexible manufacturing system with their reflection on the competitive environmental performance of the firm. To interpret and tackle the problem, a hypothesis has formulated stating that “ the competitive performance of a firm is interpreted by the manufacturing strategy and flexibility which are derived from the firm and its business strategies under the flexible manufacturing system”. Related literatures with their theoretical dissertations, which enhanced the thoughtful content, have analyzed. An illustrative case study on the flexible manufacturing system at Toyota Motors Corporation working at the g
... Show MoreMethods of estimating statistical distribution have attracted many researchers when it comes to fitting a specific distribution to data. However, when the data belong to more than one component, a popular distribution cannot be fitted to such data. To tackle this issue, mixture models are fitted by choosing the correct number of components that represent the data. This can be obvious in lifetime processes that are involved in a wide range of engineering applications as well as biological systems. In this paper, we introduce an application of estimating a finite mixture of Inverse Rayleigh distribution by the use of the Bayesian framework when considering the model as Markov chain Monte Carlo (MCMC). We employed the Gibbs sampler and
... Show More