In this study, the effect of ceramic coating on the performance and gases emission on diesel engine was investigated. A four-stroke, direct injected, single cylinder, diesel engine was tested at constant speed and at different load conditions without coating. Then, the inlet and exhaust valves faces were coated by about 500µm with ceramic materials. Ceramic layers were made of YttriaStabilized Zirconia (YSZ), and NiCrAl as a bond coat. The coating technique adapted in this work is the flame spray method. The engine with valves ceramiccoated research was tested for the same operation conditions of the engine (without coating). The results indicate a reduction in both fuel consumption by about 7.6% and particulate emissions by about (13% for HC and 14.5% for CO) with increasing in exhaust gases temperature after coating.
The dynamic behavior of laced reinforced concrete (LRC) T‐beams could give high‐energy absorption capabilities without significantly affecting the cost, which was offered through a combination of high strength and ductile response. In this paper, LRC T‐beams, composed of inclined continuous reinforcement on each side of the beam, were investigated to maintain high deformations as predicted in blast resistance. The beams were tested under four‐point loading to create pure bending zones and obtain the ultimate flexural capacities. Transverse reinforcement using lacing reinforcement and conventional vertical stirrups were compared in terms of deformation, strain, and toughness changes of the tes
Although the axial aptitude and pile load transfer under static loading have been extensively documented, the dynamic axial reaction, on the other hand, requires further investigation. During a seismic event, the pile load applied may increase, while the soil load carrying capacity may decrease due to the shaking, resulting in additional settlement. The researchers concentrated their efforts on determining the cause of extensive damage to the piles after the seismic event. Such failures were linked to discontinuities in the subsoil due to abrupt differences in soil stiffness, and so actions were called kinematic impact of the earthquake on piles depending on the outcomes of laboratory