Earth dams are constructed mainly from soil. A homogenous earth dam is composed of only one material. The seepage through such dams is quite high. Upstream impervious blanket is one of the methods used to control seepage through the dam foundations. Bennet's method is one of the commonly used methods to design an impervious upstream blanket. Design charts are developed relating the length of blanket, total reservoir head, total base width of the dam (excluding downstream drainage), the coefficient of permeability of the blanket material, blanket thickness, foundation thickness, and coefficient of permeability of the foundation soil, based on the equations governing the Bennet's method for a homogenous earth dam with a blanket of uniform thickness. The length of the upstream impervious blanket can be determined by using the developed charts. The length of the blanket is inversely proportional to the coefficient of permeability of the blanket material. The length of blanket is directly proportional to the total reservoir head, total base width of the dam (excluding downstream drainage), blanket thickness, foundation thickness, and coefficient of permeability of the foundation soil.
In this study, we design narrow band pass filter for window (3_5) ?m dependent on the needle optimization method , and a comparison with global designs published -Also, the effect of change parameter design on the optical performance of filter was studded and being able to overcome the difficulties of the design.In this study, the adoption of homogeneous optical properties materials as thin film depositing on a substrate of germanium at wavelength design (? = 4 ?m). For design this kind of filters we used advanced computer program (Matlab )to build a model design dependent both matrix characteristic and Needle technique. In this paper we refer to the type of Mert function , which is used for correct optical performance acces
... Show MoreThe constructed building in the urban area is subject to wind characteristics due to the influence of surrounding buildings. The residential complexes currently being built in Iraq represent a case study for the subject of this research. Therefore, the objective of this study is to identify the interference effect because of adjacent buildings effects on the mid-rise building. The speed and pressure of the wind have been numerically simulated as well as wind load has been simulated by using a virtual wind tunnel which is available in Autodesk Robot Structural Analysis, RSA, software. Two identical adjacent buildings have been simulated and many coefficients were included in this study such as the spacing, directionality,
... Show MoreLacing reinforcement plays a critical role in the design and performance of reinforced concrete (RC) slabs by distributing the applied loads more evenly across the slab, ensuring that no specific area of the slab is overloaded. In this study, nine slabs, divided into three groups according to the investigated parameters, were meticulously designed and evaluated to study the interplay between the lacing reinforcement and other key parameters. Each slab was crafted for simple support and was subjected to both static and repeated two-point load tests. The lacing reinforcement had an angle of 45° with various tension and lacing steel. The repeated-tested specimens with lacing reinforcement experienced smaller ductility than those of s
... Show MoreThis paper proposes a collaborative system called Recycle Rewarding System (RRS), and focuses on the aspect of using information communication technology (ICT) as a tool to promote greening. The idea behind RRS is to encourage recycling collectors by paying them for earning points. In doing so, both the industries and individuals reap the economical benefits of such system. Finally, and more importantly, the system intends to achieve a green environment for the Earth. This paper discusses the design and implementation of the RRS, involves: the architectural design, selection of components, and implementation issues. Five modules are used to construct the system, namely: database, data entry, points collecting and recording, points reward
... Show MoreLacing reinforcement plays a critical role in the design and performance of reinforced concrete (RC) slabs by distributing the applied loads more evenly across the slab, ensuring that no specific area of the slab is overloaded. In this study, nine slabs, divided into three groups according to the investigated parameters, were meticulously designed and evaluated to study the interplay between the lacing reinforcement and other key parameters. Each slab was crafted for simple support and was subjected to both static and repeated two-point load tests. The lacing reinforcement had an angle of 45° with various tension and lacing steel. The repeated-tested specimens with lacing reinforcement experienced smaller ductility than those of s
... Show MoreThere is a variety of artificial foot designs variable for use with prosthetic legs . Most of the design can be divided into two classes, articulated and non-articulated feet. one common non-articulated foot is the SACH . The solid ankle cushion heel foot referred to as the SACH foot has a rigid keel .
One key or the key factor in designing a new prosthesis is in the analysis of a patients response .
This view is the most important because if the foot does not provide functional , practical or cosmetically acceptable characteristics the patient will not feel comfortable with the prosthesis , therefore design and manufacturing a new foot is essential, this foot made from polyethylene, its different shape and characte
... Show MoreIn this paper, a step-index fiber with core index 1.445 5 1 7 and cladding index 1.443 1 5 7 has been designed and studied. Multimode operation is achieved by using a fiber with core radius 25 μm operating at a wavelength of 1.3 μm. The mode parameters (effective refractive index, phase constant, fractional modal power in the core and cutoff wavelength) were calculated using RP fiber calculator (PRO version 2020). The shapes of the intensity and amplitude distribution of linearly polarized guided modes were shown.
This work is focused on the design parameters and activity of artificial human finger for seven grips. At first, obtained the ideal kinematics of human fingers motion by analyzing the grips video which were recorded using a single digital camera recorder fitted on a tripod in sagital plane while the hand is moving. Special motion analysis software (Dartfish) the finger joint angles were studied using the video recording. Then the seven grips were modeled using static torque analysis, which calculates the amount of torque applied on the fingers joint grip depending on the results of the kinematic analysis. The last step of the work was to design the actuator (Muscle Wire) of artificial finger for the seven grips in a simple design approac
... Show MoreIn developing countries, individual students and researchers are not able to afford the high price of the subscription to the international publishers, like JSTOR, ELSEVIER,…; therefore the governments and/or universities of those countries aim to purchase one global subscription to the international publishers to provide their educational resources at a cheaper price, or even freely, to all students and researchers of those institutions. For realizing this concept, we must build a system that sits between the publishers and the users (students or researchers) and act as a gatekeeper and a director of information: this system must register its users and must have an adequate security to e
... Show MoreSeveral stress-strain models were used to predict the strengths of steel fiber reinforced concrete, which are distinctive of the material. However, insufficient research has been done on the influence of hybrid fiber combinations (comprising two or more distinct fibers) on the characteristics of concrete. For this reason, the researchers conducted an experimental program to determine the stress-strain relationship of 30 concrete samples reinforced with two distinct fibers (a hybrid of polyvinyl alcohol and steel fibers), with compressive strengths ranging from 40 to 120 MPa. A total of 80% of the experimental results were used to develop a new empirical stress-strain model, which was accomplished through the application of the parti
... Show More