This research presents experimental and theoretical investigation of 15 reinforced concrete spliced and nonspliced girder models. Splices of hooked dowels and cast in place joints, with or without strengthening steel plates were used. Post-tensioning had been used to enhance the splice strength for some spliced girders. The ANSYS computer program was used for analyzing the spliced and non-spliced girders. A nonlinear three dimensional element was used to represent all test girders. The experimental results have shown that for a single span girder using steel plate connectors in the splice zone has given a sufficient continuity to resist flexural stresses in this region. The experimental results have shown that the deflection of hooked dowels spliced girders is greater than that of non-spliced girder in the range of (17%-50%) at about 50% of the ultimate load which approximately corresponds to the serviceability limit state and the ultimate loads is less than that of non-spliced girder in the range of (12%-52%). For other spliced girders having strengthening steel plates at splices, the results have shown that the deflection of the spliced girder is less than that of non-spliced girder in the range of (2%-20%) at about 50% of the ultimate load and the ultimate loads for spliced girder is greater than that of nonspliced girder in the range of (1%-7%). The post-tensioned concrete girders have shown a reduction in deflection in the range of (26% - 43%) at a load of 50% of the ultimate load as compared with that of ordinary girders. Moreover, post-tensioning increases the ultimate loads in the range of (70% - 132%). The results obtained by using the finite element solution showed a good agreement with experimental results. The maximum difference between the experimental and theoretical ultimate loads for girders was in the range of (3-11%).
In this paper, the complexes of Shiff base of Methyl -6-[2-(diphenylmethylene)amino)-2-(4-hydroxyphenyl)acetamido]-2,2-dimethyl-5-oxo-1-thia-4-azabicyclo[3.2.0]heptane-3-carboxylate (L) with Cobalt(II), Nickel(II), Cupper(II) and Zinc(II) have been prepared. The compounds have been characterized by different means such as FT-IR, UV-Vis, magnetic moment, elemental microanalyses (C.H.N), atomic absorption, and molar conductance. It is obvious when looking at the spectral study that the overall complexes obtained as monomeric structure as well as the metals center moieties are two-coordinated with octahedral geometry excepting Co complexes that existed as a tetrahedral geometry. Hyper Chem-8.0.7
... Show MoreBackground: Pervasive Developmental Disorder (PDD) is a term refers to the overarching group of conditions to which autism spectrum disorder (ASD) belongs .
Objective: This study was designed to determine the existing behavior of children with autism in dental sitting, the behavior improvements in recall dental visits and evaluate the improvement in oral hygiene with using specific visual pedagogy chart.
Type of the study: Cross-sectional study.
Methods: Forty children of both genders, ages ranged from 4 – 6 years having primary teeth only were selected whose medical history included a diagnosis
... Show MoreIn this study, plain concrete simply supported beams subjected to two points loading were analyzed for the flexure. The numerical model of the beam was constructed in the meso-scale representation of concrete as a two phasic material (aggregate, and mortar). The fracture process of the concrete beams under loading was investigated in the laboratory as well as by the numerical models. The Extended Finite Element Method (XFEM) was employed for the treatment of the discontinuities that appeared during the fracture process in concrete. Finite element method with the feature standard/explicitlywas utilized for the numerical analysis. Aggregate particles were assumedof elliptic shape. Other properties such as grading and sizes of the aggr
... Show MoreIn this paper, the theoretical cross section in pre-equilibrium nuclear reaction has been studied for the reaction at energy 22.4 MeV. Ericson’s formula of partial level density PLD and their corrections (William’s correction and spin correction) have been substituted in the theoretical cross section and compared with the experimental data for nucleus. It has been found that the theoretical cross section with one-component PLD from Ericson’s formula when doesn’t agree with the experimental value and when . There is little agreement only at the high value of energy range with the experimental cross section. The theoretical cross section that depends on the one-component William's formula and on-component corrected to spi
... Show MoreLacing reinforcement plays a critical role in the design and performance of reinforced concrete (RC) slabs by distributing the applied loads more evenly across the slab, ensuring that no specific area of the slab is overloaded. In this study, nine slabs, divided into three groups according to the investigated parameters, were meticulously designed and evaluated to study the interplay between the lacing reinforcement and other key parameters. Each slab was crafted for simple support and was subjected to both static and repeated two-point load tests. The lacing reinforcement had an angle of 45° with various tension and lacing steel. The repeated-tested specimens with lacing reinforcement experienced smaller ductility than those of s
... Show MoreLacing reinforcement plays a critical role in the design and performance of reinforced concrete (RC) slabs by distributing the applied loads more evenly across the slab, ensuring that no specific area of the slab is overloaded. In this study, nine slabs, divided into three groups according to the investigated parameters, were meticulously designed and evaluated to study the interplay between the lacing reinforcement and other key parameters. Each slab was crafted for simple support and was subjected to both static and repeated two-point load tests. The lacing reinforcement had an angle of 45° with various tension and lacing steel. The repeated-tested specimens with lacing reinforcement experienced smaller ductility than those of s
... Show MoreAntibacterial substances belong to a group of compounds that attack dangerous microorganisms. Therefore, killing bacteria or reducing their metabolic activity will lessen their adverse effects on a biological system. They originated from either synthetic materials, microbes, or mold. Many of these medications treat the gram-negative bacteria from the critical precedence group, such as pseudomonas, carbapenem-resistant acinetobacter, and enterobacterales. This study aims to investigate the simultaneous analysis of specific antibacterial spectrophotometrically. The WHO maintains this list of priority infections with antibiotic resistance. Drug combinations in single dosage forms are becoming increasingly popular in the pharmaceutical industry
... Show MoreThe article describes a study on the role of vitamin C as a protective agent for the teeth, gum, and implants using quantum chemical calculations and polarization tests. The Density Functional Theory (DFT) at 6-311G (d, p) basis set is used to estimate the ability of vitamin C to inhibit the corrosion of the abovementioned parts. The experimental study was performed in a at human body media simulator (Hank’s balanced salt solution) at a temperature of 37°C. The compound was optimized for its ground state, physical properties, and corrosion parameters. Further, HOMO, LUMO, energy gap, dipole moment, and other parameters were used to predict the inhibitor’s efficiency. Gaussian 09, UCA-FUKUI, MGL tools, DSV, and LigPlus software was used
... Show MoreConventional concretes are nearly unbendable, and just 0.1 percent of strain potential makes them incredibly brittle and stiff. This absence of bendability is a significant cause of strain failure and has been a guiding force in the production of an elegant substance, bendable concrete, also known as engineered cement composites, abbreviated as ECC. This type of concrete is capable of displaying dramatically increased flexibility. ECC is reinforced with micromechanical polymer fibers. ECC usually uses a 2 percent volume of small, disconnected fibers. Thus, bendable concrete deforms but without breaking any further than conventional concrete. This research aims to involve this type of concrete, bendable concrete, that will give solut
... Show More