Preferred Language
Articles
/
joe-2129
Data Classification using Quantum Neural Network
...Show More Authors

In this paper, integrated quantum neural network (QNN), which is a class of feedforward

neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that (QNN’s) are capable of recognizing structures in data, a property that conventional (FFNN’s) with sigmoidal hidden units lack. In addition, (QNN) gave a kind of fast and realistic results compared with the (FFNN). Simulation results indicate that QNN is superior (with total accuracy of 97.778%) than ANN (with total accuracy of 93.334%).

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 01 2009
Journal Name
Iraqi Journal Of Physics
Oscillator Strength and Quantum Efficiency of Fluoranthene Molecule
...Show More Authors

The fluorescence and absorption spectra of Fluoranthene dissolved in
cyclohexane and ethanol were studied and analyzed. The effect of the
concentration of this molecule and the polarity of the solvents on the spectral
shifts and on relative intensity has been investigated. A computational program
was written in order to convert the spectra from grapher to data. Some
photophysical parameters such as oscillator strength and quantum efficiency have
been calculated. Fluorescence quantum efficiency of Fluoranthene was measured
relative to Quinine Sulfate (QS) in 1N H2SO4. The obtained values were (0.5) in
cyclohexane and (0.45) in ethanol

View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Ieee Access
A Novel Approach to Improving Brain Image Classification Using Mutual Information-Accelerated Singular Value Decomposition
...Show More Authors

View Publication
Scopus (43)
Crossref (42)
Scopus Clarivate Crossref
Publication Date
Fri Jan 31 2025
Journal Name
Aip Conference Proceedings
Classification of oral cavity cancer using linear discriminant analysis (LDA) and principal component analysis (PCA)
...Show More Authors

View Publication
Crossref (1)
Scopus Crossref
Publication Date
Sun Mar 31 2013
Journal Name
Inventi Impact: Artificial Intelligence
SIMULATION OF IDENTIFICATION AND CONTROL OF SCARA ROBOT USING MODIFIED RECURRENT NEURAL NETWORKS
...Show More Authors

This paper presents a modified training method for Recurrent Neural Networks. This method depends on the Non linear Auto Regressive (NARX) model with Modified Wavelet Function as activation function (MSLOG) in the hidden layer. The modified model is known as Modified Recurrent Neural (MRN). It is used for identification Forward dynamics of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot. This model is also used in the design of Direct Inverse Control (DIC). This method is compared with Recurrent Neural Networks that used Sigmoid activation function (RS) in the hidden layer and Recurrent Neural Networks with Wavelet activation function (RW). Simulation results shows that the MRN model is bett

... Show More
View Publication
Publication Date
Wed Dec 27 2017
Journal Name
Al-khwarizmi Engineering Journal
Human Face Recognition Using GABOR Filter And Different Self Organizing Maps Neural Networks
...Show More Authors

 

This work implements the face recognition system based on two stages, the first stage is feature extraction stage and the second stage is the classification stage. The feature extraction stage consists of Self-Organizing Maps (SOM) in a hierarchical format in conjunction with Gabor Filters and local image sampling. Different types of SOM’s were used and a comparison between the results from these SOM’s was given.

The next stage is the classification stage, and consists of self-organizing map neural network; the goal of this stage is to find the similar image to the input image. The proposal method algorithm implemented by using C++ packages, this work is successful classifier for a face database consist of 20

... Show More
View Publication Preview PDF
Publication Date
Mon Jul 01 2024
Journal Name
Journal Of Optics
Optical and structural characteristics of carbon quantum dots manufacturing by electrochemical method
...Show More Authors

Electrochemical method was used to prepare carbon quantum dots (CQDs). Size of matter was nature when evaluate via X-ray diffraction (XRD). A distinct peak at 2θ equal to 31.6° and three other small peaks at 38.28°, 56.41° and 66.12° were observed. The measures of Fourier Transform Infrared Spectroscopy (FTIR) showed the bonds in the transmittance spectrum are manufactured with carbon nanostructures in view. The first peaks are the O–H stretching vibration bands at (3417 and 2922) cm−1, (C–O–H at 1400, and 1317) cm−1, (C–H), (C=C), (C–O–H), (C=O), and (C–O) bonds at 2850, 1668, 1101, and 1026 cm−1 sequentially. The transmission electron microscopy (TEM) results presented that the spherical CQDs are in shape and on a

... Show More
View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Wed Aug 17 2022
Journal Name
Aip Conference Proceedings
The effect of using Gaussian, Kurtosis and LogCosh as kernels in ICA on the satellite classification accuracy
...Show More Authors

This study focusses on the effect of using ICA transform on the classification accuracy of satellite images using the maximum likelihood classifier. The study area represents an agricultural area north of the capital Baghdad - Iraq, as it was captured by the Landsat 8 satellite on 12 January 2021, where the bands of the OLI sensor were used. A field visit was made to a variety of classes that represent the landcover of the study area and the geographical location of these classes was recorded. Gaussian, Kurtosis, and LogCosh kernels were used to perform the ICA transform of the OLI Landsat 8 image. Different training sets were made for each of the ICA and Landsat 8 images separately that used in the classification phase, and used to calcula

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Jun 29 2018
Journal Name
Journal Of The College Of Education For Women
Audio Classification Based on Content Features
...Show More Authors

Audio classification is the process to classify different audio types according to contents. It is implemented in a large variety of real world problems, all classification applications allowed the target subjects to be viewed as a specific type of audio and hence, there is a variety in the audio types and every type has to be treatedcarefully according to its significant properties.Feature extraction is an important process for audio classification. This workintroduces several sets of features according to the type, two types of audio (datasets) were studied. Two different features sets are proposed: (i) firstorder gradient feature vector, and (ii) Local roughness feature vector, the experimentsshowed that the results are competitive to

... Show More
View Publication Preview PDF
Publication Date
Thu Mar 31 2022
Journal Name
Iraqi Geological Journal
Development of New Models to Determine the Rheological Parameters of Water-Based Drilling Fluid using Artificial Neural Networks
...Show More Authors

It is well known that drilling fluid is a key parameter for optimizing drilling operations, cleaning the hole, and managing the rig hydraulics and margins of surge and swab pressures. Although the experimental works represent valid and reliable results, they are expensive and time consuming. In contrast, continuous and regular determination of the rheological fluid properties can perform its essential functions during good construction. The aim of this study is to develop empirical models to estimate the drilling mud rheological properties of water-based fluids with less need for lab measurements. This study provides two predictive techniques, multiple regression analysis and artificial neural networks, to determine the rheological

... Show More
Crossref
Publication Date
Sun Dec 01 2024
Journal Name
Materials Letters
Determination of third order susceptibility of carbon quantum dots at different concentrations
...Show More Authors

The nonlinear refractive (NLR) index and third order susceptibility (X3) of carbon quantum dots (CQDs) have been studied using two laser wavelengths (473 and 532 nm). The z-scan technique was used to examine the nonlinearity. Results showed that all concentrations have negative NLR indices in the order of 10−10 cm2/W at two laser wavelengths. Moreover, the nonlinearity of CQDs was improved by increasing the concentration of CQDs. The highest value of third order susceptibility was found to be 3.32*10−8 (esu) for CQDs with a concentration of 70 mA at 473 nm wavelength.

View Publication
Scopus Clarivate Crossref