Granular Pile Anchor (GPA) is one of the innovative foundation techniques, devised for mitigating heave of footing resulting from the expansive soils. This research attempts to study the heave behavior of (GPA-Foundation System) in expansive soil. Laboratory tests have been conducted on an experimental model in addition to a series of numerical modeling and analysis using the finite element package PLAXIS software. The effects of different parameters, such as (GPA) length (L) and diameter (D), footing diameter (B), expansive clay layer thickness (H) and presence of non-expansive clay are studied. The results proved the efficiency of (GPA) in reducing the heave of expansive soil and showed that the heave can be reduced with increasing length and diameter of (GPA). The heave of (GPA-Foundation System) is controlled by three independent variables these are (L/D) ratio, (L/H) ratio and (B/D) ratio. The heave can be reduced by up to (38 %) when (GPA) is embedded in expansive soil layer at (L/H=1) and reduced by about (90 %) when (GPA) is embedded in expansive soil and extended to non- expansive clay (stable zone) at (L/H=2) at the same diameter of (GPA) and footing. An equation (mathematical mode1) was obtained by using the computer package (SPSS 17.0) for statistical analysis based on the results of finite element analysis relating the maximum heave of (GPA-Foundation System) as a function of the above mentioned three independent variables with coefficient of regression of (R2 = 92.3 %).
In this research, the program SEEP / W was used to compute the value of seepage through the homogenous and non-homogeneous earth dam with known dimensions. The results show that the relationship between the seepage and water height in upstream of the dam to its length for saturated soil was nonlinear when the dam is homogenous. For the non-homogeneous dam, the relationship was linear and the amount of seepage increase with the height of water in upstream to its length. Also the quantity of seepage was calculated using the method of (Fredlund and Xing, 1994) and (Van Genuchten, 1980) when the soil is saturated – unsaturated, the results referred to that the higher value of seepage when the soil is saturated and the lowe
... Show MoreThe main objective of this study is to examine the impact of moisture concrete of clayey soil on the concrete slabs placed directly over it. This experimental study presents the mechanical properties of the concrete slab when placed on different clayey soil moisture content ranging from 0% to the optimum moisture content of 35%. The tests were performed on soil concrete specimens of 25*30*50 mm exposed to sprayed water curing conditions for 28 days. Tests of compressive strength, ultrasonic pulse velocity, crack depth and crack width were investigated through this paper. An ejection relationship between compressive strength of concrete and water content in the soil was observed, with a 26% increase with water increasing from 0% to 35%. T
... Show MoreRemoving Congo red (CR) is critical in wastewater treatment. We introduce a combination of electrocoagulation (EC) and electro-oxidation (EO) to address the elimination of CR. We also discuss the deposition of triple oxides (Cu–Mn–Ni) simultaneously on both anodic and cathodic graphite electrodes at constant current density. These electrodes efficiently worked as anodes in the EC-EO system. The EC-CO combination eliminated around 98 % of the CR dye and about 95 % of the Chemical Oxygen demand (COD), and similar results were obtained with the absence of NaCl. Thus, EC-EO is a promising technique to remove CR in an environmentally friendly pathway.
Many researchers have tackled the shear behavior of Reinforced Concrete (RC) beams by using different kinds of strengthening in the shear regions and steel fibers. In the current paper, the effect of multiple parameters, such as using one percentage of Steel Fibers (SF) with and without stirrups, without stirrups and steel fibers, on the shear behavior of RC beams, has been studied and compared by using Finite Element analysis (FE). Three-dimensional (3D) models of (RC) beams are developed and analyzed using ABAQUS commercial software. The models were validated by comparing their results with the experimental test. The total number of beams that were modeled for validation purposes was four. Extensive pa
... Show MoreRecent phosphorus (P) pollution in the United States, mainly in Maine, has raised some severe concerns over the use of P fertilizer application rates in agriculture. Phosphorus is the second most limiting nutrient after nitrogen and has damaging impacts on crop yield if found to be deficient. Therefore, farmers tend to apply more P than is required to satisfy any P loss after its application at planting. Several important questions were raised in this study to improve P efficiency and reduce its pollution. The objective of this study was to find potential reasons for P pollution in water bodies despite a decrease in potato acreage. Historically, the potato was found to be responsible for P water contamination due to its high P sensitivity a
... Show MoreABSTRACT Purpose: the aim of this in vitro study was to compare the marginal gap and internal fitness between single crowns and the crowns within three-unit bridges of zirconium fabricated by CAD-CAM system. Materials and methods: A standard model from ivoclar company was used as a pattern to simulate three-units bridge (upper first molar and upper first premolar) as abutments used to fabricate stone models, eight single crowns for premolar and eight of three units bridges. Crowns and bridges fabricated by CAD-CAM system were cemented on their respective stone models then sectioned at the mid-point buccolingaully and misiodistaly and examined under stereomicroscope. Result: the marginal gap in premolar crowns and premolar within bridge we
... Show More