In the present work advanced oxidation process, photo-Fenton (UV/H2O2/Fe+2) system, for the treatment of wastewater contaminated with oil was investigated. The reaction was influenced by the input concentration of hydrogen peroxide H2O2, the initial amount of the iron catalyst Fe+2, pH, temperature and the concentration of oil in the wastewater. The removal efficiency for the system UV/ H2O2/Fe+2 at the optimal conditions and dosage (H2O2 = 400mg/L, Fe+2 = 40mg/L, pH=3, temperature =30o C) for 1000mg/L load was found to be 72%.
Indirect electrochemical oxidation of phenol and its derivatives was investigated by using MnO2 rotating cylinder electrode. Taguchi experimental design method was employed to find the best conditions for the removal efficiency of phenol and its derivatives generated during the process. Two main parameters were investigated, current density (C.D.) and electrolysis time. The removal efficiency was considered as a response for the phenol and other organics removal. An orthogonal array L16, the signal to noise (S/N) ratio, and the analysis of variance were used to test the effect of designated process factors and their levels on the performance of phenol and other organics removal efficiency. The results showed that th
... Show MoreThe studying trying to determine the role of Strategic Intelligence on the Process of Green Manufacturing of Sample of Mineral water factories at Dahuk city. The study submit a theoretical frame of Strategic Intelligence and Green Manufacturing, a supposed sample, had been set to reverye the nature of the relations and effect in the study Varity, the study depend on group of the main and branch concurring with the relations and effect between the Strategic Intelligence and Green Manufacturing to answer the following questions about research to problems:
What are the relationships and effects between stra
... Show MoreWith a goal to identify, and ultimately removing from the oil fraction, the carcinogenic components, an oil fraction oil has been analyzed into a main three hydrocarbon groups, paraffins, aromatics, and polycyclic saturates. A multi-stage adsorption apparatus has been used. Four units of 300 g alumina each seems to be sufficient for removing the polynuclear aromatics from 75 g of an oil fraction boiling between 365-375 °C from Qurna crude oil. The usefulness of the ternary diagram for analyzing the oil fraction to the three hydrocarbons groups has been studied and verified. An experimentally based linear relationship of density and refractive index was established to enable of identifying the composition of an oil fraction using th
... Show MoreThe pollution producing from textile industries effluents is growing since the years, due to at discharged lots of it in water without treatment. The resulting effluent is colourful, highly toxic, and poses a significant environmental hazard. This problem can be solved by using enzymic biological treatment, where the Congo red dye was used with concentrations (100,200,300,500) mg /L, pH values (3,4,5,6,7,8), and variable temperatures (25,35,45)°C, the best removal of Congo red (CR) dye under optimum conditions for degradation was at concentration of 100 mg/L, at (pH 6, 25 °C) with efficiency of 99.85 % using the peroxidase enzyme extracted from red radish plant, while the removal percentage decreased when increase dye concentration
... Show MoreMany oil and gas processes, including oil recovery, oil transportation, and petroleum processing, are negatively impacted by the precipitation and deposition of asphaltene. Screening methods for determining the stability of asphaltenes in crude oil have been developed due to the high cost of remediating asphaltene deposition in crude oil production and processing. The colloidal instability index, the Asphaltene-resin ratio, the De Boer plot, and the modified colloidal instability index were used to predict the stability of asphaltene in crude oil in this study. The screening approaches were investigated in detail, as done for the experimental results obtained from them. The factors regulating the asphaltene precipitation are different fr
... Show MoreThe majority of the environmental outputs from gas refineries are oily wastewater. This research reveals a novel combination of response surface methodology and artificial neural network to optimize and model oil content concentration in the oily wastewater. Response surface methodology based on central composite design shows a highly significant linear model with P value <0.0001 and determination coefficient R2 equal to 0.747, R adjusted was 0.706, and R predicted 0.643. In addition from analysis of variance flow highly effective parameters from other and optimization results verification revealed minimum oily content with 8.5 ± 0.7 ppm when initial oil content 991 ppm, tempe
