In this study, the electro-hydraulic servo system for speed control of fixed displacement hydraulic motor using proportional valve and (PID) controller is investigated theoretically ,experimentally and simulation . The theoretical part includes the derivation of the nonlinear mathematical model equation of (valve – motor ) combination system and the derivation of the transfer function for the complete hydraulic system , the stability test of the system during the operation through the transfer function using MATLAB package
V7.1 have been done. An experimental part includes design and built hydraulic test rig and simple PID controller .The best PID gains have been calculated experimentally and simulation, speed control performance tests for the system at different thermal conditions for hydraulic oil have been done , Simulation analysis for (EHSS) using Automation Studio package V5.2 have been done . Comparison was made between experimental work and simulation work .The experimental results show good performance for (EHSS) using simple (PID) controller at hydraulic oil temperature around (60 – 70 ) and good speed response and performance for hydraulic motor with constant rotation speed (700) rpm with different load disturbance applied on the hydraulic motor .
This paper deals with modelling and control of Euler-Bernoulli smart beam interacting with a fluid medium. Several distributed piezo-patches (actuators and/or sensors) are bonded on the surface of the target beam. To model the vibrating beam properly, the effect of the piezo-patches and the hydrodynamic loads should be taken into account carefully. The partial differential equation PDE for the target oscillating beam is derived considering the piezo-actuators as input controls. Fluid forces are decomposed into two components: 1) hydrodynamic forces due to the beam oscillations, and 2) external (disturbance) hydrodynamic loads independent of beam motion. Then the PDE is discretized usi
Currently, there is an intensive development of bipedal walking robots. The most known solutions are based on the use of the principles of human gait created in nature during evolution. Modernbipedal robots are also based on the locomotion manners of birds. This review presents the current state of the art of bipedal walking robots based on natural bipedal movements (human and bird) as well as on innovative synthetic solutions. Firstly, an overview of the scientific analysis of human gait is provided as a basis for the design of bipedal robots. The full human gait cycle that consists of two main phases is analysed and the attention is paid to the problem of balance and stability, especially in the single support phase when the biped
... Show MoreThe purpose of this research is to design a list of the scientific and moral values that should be found in the content of the computer textbook for the second intermediate grade, as well as to analyze the content of the above- mentioned book by answering the following question:
What is the percentage of availability of scientific and moral values in the content of the computer textbook for Second Intermediate grade issued by the Iraqi Ministry of Education / the general directorate of the curriculum, for the academic year (2017-2018)?
In order to achieve the research objectives, the descriptive method (content analysis method) was adopted. The research community has been iden
... Show MoreIn this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de
... Show MoreThis paper investigates the performance evaluation of two state feedback controllers, Pole Placement (PP) and Linear Quadratic Regulator (LQR). The two controllers are designed for a Mass-Spring-Damper (MSD) system found in numerous applications to stabilize the MSD system performance and minimize the position tracking error of the system output. The state space model of the MSD system is first developed. Then, two meta-heuristic optimizations, Simulated Annealing (SA) optimization and Ant Colony (AC) optimization are utilized to optimize feedback gains matrix K of the PP and the weighting matrices Q and R of the LQR to make the MSD system reach stabilization and reduce the oscillation of the response. The Matlab softwar
... Show MoreIdentify the effect of an educational design according to the repulsive (allosteric) learning model on the achievement of chemistry and lateral thinking. The sample consisted of (59) students from third-grade intermediate students. They were randomly distributed into two groups (experimental and control), and the equivalence was done in (chronological age, previous achievement in chemistry, intelligence, lateral thinking). The (30) students from experimental group were taught according to the instructional design, other 29 students from the (control) group were taught according to the usual method. Two tests done, one of them is an achievement test consisted of (30) items of the type of multiple choice, the other was a lateral think
... Show MoreAccording to Chandra Survey Observatory Near-Asteroid Belt Comets, the solar wind's contact with the comet produces a variety of spectral characteristics. The study of X-ray spectra produced by charge exchange is presented here. The spectrum of a comet can reveal a lot about its composition. This study has concentrated on the elemental abundance in six different comets, including 17P/Holmes, C/1999T1, C/2013A1, 9p/Temple1, and 103p/Hartley2 (NEAT). Numerous aspects of the comet's dynamics allow it to behave in a unique manner as it gets closer to the Near-Asteroid Belt. These characteristics are being examined, and some studies are still ongoing. The computations allow us to observe, for instance, how the composition of
... Show More