Electro-kinetic remediation technology is one of the developing technologies that offer great promise for the cleanup of soils contaminated with heavy metals. A numerical model was formulated to simulate copper (Cu) transport under an electric field using one-dimensional diffusion-advection equations describing the contaminant transport driven by chemical and electrical gradients in soil during the electro-kinetic remediation as a function of time and space. This model included complex physicochemical factors affecting the transport phenomena, such as soil pH value, aqueous phase reaction, adsorption, and precipitation. One-dimensional finitedifference computer program successfully predicted meaningful values for soil pH profiles and Cu concentration profiles. The model considers that: (1) electrical potential in the soil is constant with the time; (2) the effect of temperature is negligible; and (3) dissolution of soil constituents is negligible. The predicted pH profiles and transport of copper in sandy loam soil during electrokinetic remediation were found to reasonably agree with the bench-scale electro-kinetic
experimental results. The predicted contaminant speciation and distribution (aqueous, adsorbed, and precipitated) allow for an understanding of the transport processes and chemical reactions that control electro-kinetic remediation.
Various industrial applications include the dyeing of textiles, paper, leather, and food products, as well as the cosmetics industry. Physic-chemical methods are required to breakdown dyes because they are known to be harmful and persistent in the environment. Many companies' treated effluents contain small amounts of dyes. When it comes to removing dye from wastewater, adsorption has verified to be aneconomical alternative to more traditional treatment procedures. It's important to degrade color impurities in industrial effluents since they constitute a serious health and environmental concern. One way that's been tried is using clay minerals as an adsorbent. Using adsorption for removing
... Show MoreAdsorption of Acetone and 2-Butanone on Iraqi siliceouns rocks powder have been investigated. UV technique has been used to determine the adsorption isotherms. The results showed that the adsorption isotherms obeyed Freundlich adsorption equation. The results showed that the adsorption increases with increasing acidity of solutions. The adsorption was exothermic process, increasing temperature leads to decreasing adsorption. H, S, G were calculated
Air stripping for removal of Trichloroethylene (TCE), Chloroform (CF) and Dichloromethane (DCM) from water were studied in a bubble column (0.073 m inside dia. and 1.08 m height with several sampling ports). The contaminated water was prepared from deionized water and VOCs. The presence of VOCs in feed solution was single, binary or ternary components. They were diluted to the concentrations ranged between 50 mg/l to 250 mg/l. The experiments were carried out in batch experiments which regard the bubble column as stirred tank and only gas was bubbled through stationary liquid. In this case transient measurements of VOC concentration in the liquid phase and the measured concentra
... Show MoreSimple and sensitive kinetic methods are developed for the determination of Paracetamol in pure form and in pharmaceutical preparations. The methods are based on direct reaction (oxidative-coupling reaction) of Paracetamol with o-cresol in the presence of sodium periodate in alkaline medium, to form an intense blue-water-soluble dye that is stable at room temperature, and was followed spectrophotometriclly at λmax= 612 nm. The reaction was studied kinetically by Initial rate and fixed time (at 25 minutes) methods, and the optimization of conditions were fixed. The calibration graphs for drug determination were linear in the concentration ranges (1-7 μg.ml-1) for the initial rate and (1-10 μg.ml-1) for the fixed time methods at 25 min.
... Show MoreAbstract
The aim of this work is to create a power control system for wind turbines based on fuzzy logic. Three power control loop was considered including: changing the pitch angle of the blade, changing the length of the blade and turning the nacelle. The stochastic law was given for changes and instant inaccurate assessment of wind conditions changes. Two different algorithms were used for fuzzy inference in the control loop, the Mamdani and Larsen algorithms. These two different algorithms are materialized and developed in this study in Matlab-Fuzzy logic toolbox which has been practically implemented using necessary intelligent control system in electrical engineerin
... Show MoreKinematics is the mechanics branch which dealswith the movement of the bodies without taking the force into account. In robots, the forward kinematics and inverse kinematics are important in determining the position and orientation of the end-effector to perform multi-tasks. This paper presented the inverse kinematics analysis for a 5 DOF robotic arm using the robotics toolbox of MATLAB and the Denavit-Hartenberg (D-H) parameters were used to represent the links and joints of the robotic arm. A geometric approach was used in the inverse kinematics solution to determine the joints angles of the robotic arm and the path of the robotic arm was divided into successive lines to accomplish the required tasks of the robotic arm.Therefore, this
... Show MoreThe population has been trying to use clean energy instead of combustion. The choice was to use liquefied petroleum gas (LPG) for domestic use, especially for cooking due to its advantages as a light gas, a lower cost, and clean energy. Residential complexes are supplied with liquefied petroleum gas for each housing unit, transported by pipes from LPG tanks to the equipment. This research aims to simulate the design and performance design of the LPG system in the building that is applied to a residential complex in Baghdad taken as a study case with eight buildings. The building has 11 floors, and each floor has four apartments. The design in this study has been done in two parts, part one is the design of an LPG system for one building, an
... Show More
One and two-dimensional hydraulic models simulations are important to specify the hydraulic characteristics of unsteady flow in Al-Gharraf River in order to define the locations that facing problems and suggesting the necessary treatments. The reach in the present study is 58200m long and lies between Kut and Hai Cities. Both numerical models were simulated using HEC-RAS software, 5.0.4, with flow rates ranging from 100 to 350 m3/s. Multi-scenarios of gates openings of Hai Regulator were applied. While the openings of Al-Gharraf Head Regulator were ranged between 60cm to fully opened. The suitable manning roughness for the unsteady state was
... Show MoreIn recent years the interest in fractured reservoirs has grown. The awareness has increased analysis of the role played by fractures in petroleum reservoir production and recovery. Since most Iraqi reservoirs are fractured carbonate rocks. Much effort was devoted to well modeling of fractured reservoirs and the impacts on production. However, turning that modeling into field development decisions goes through reservoir simulation. Therefore accurate modeling is required for more viable economic decision. Iraqi mature field being used as our case study. The key point for developing the mature field is approving the reservoir model that going to be used for future predictions. This can